DOI QR코드

DOI QR Code

Cr(III)-Tetraaza Macrocyclic Complexes Containing Auxiliary Ligands (Part IV); Synthesis and Characterization of Cr(III)-Acetylacetonato, -Malonato and -Oxalato Macrocyclic Complexes

  • Byun, Jong-Chul (Department of Chemistry, Research Institute for Basic Sciences, Cheju National University) ;
  • Han, Chung-Hun (Department of Chemistry, Research Institute for Basic Sciences, Cheju National University)
  • Published : 2005.09.20

Abstract

The reaction of cis-[Cr([14]-decane)$(OH)_2]^+$ ([14]-decane = rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-teraazacyclotetradecane) with auxiliary ligands {$L_a$ = acetylacetonate (acac), oxalate (ox) or malonate (mal)} leads to a new cis-[Cr([14]-decane)(acac)]$(ClO_4)_2{\cdot}(1/2)H_2O\;(1),\;cis-[Cr([14]-decane)(ox)]ClO_4{\cdot}(1/2)H_2O\;(2)\;or\;cis-[Cr([14]-decane)(mal)]ClO_4{\cdot}(1/4)H_2O\;(3)$. These complexes have been characterized by a combination of elemental analysis, conductivity, IR and Vis spectroscopy, mass spectrometry, and X-ray crystallography. Analysis of the crystal structure of cis-[Cr([14]-decane)(acac)]$(ClO_4)_2{\cdot}(1/2)H_2O$ reveals that central chromium(III) has a distorted octahedral coordination environment and two acetylacetonate-oxygen atoms are bonded to the chromium(III) ion in the cis positions. The angle $N_{axial}-Cr-N_{axial}$ deviates by $11^{\circ}$ from the ideal value of $180^{\circ}$ for a perfect octahedron. The bond angle O-Cr-O between the chromium(III) ion and the two acetylacetonate-oxygen atoms is close to $90^{\circ}$. The bond lengths of Cr-O between the chromium and the acetylacetonate-oxygen atoms are 1.950(3) and 1.954(2) $\AA$. They are shorter than those between chromium and nitrogen atoms of the macrocycle. The IR spectra of 1, 2 and 3 display bands at 1560 {ν (C=O)}, 1710 {${\nu}_{as}$(OCO)} and 1660 $cm^{-1}$ {${\nu}_{as}$(OCO)} attributed to the acac, ox and mal auxiliary ligands stretching vibrations, respectively.

Keywords

References

  1. Hosseni, M. W.; Lehn, J. M.; Duff, S. R.; Gu, K.; Mertes, M. P. J. Org. Chem. 1987, 52, 1662 https://doi.org/10.1021/jo00385a003
  2. Izan, R. M.; Brandshaw, J. S.; Neilsen, S. A.; Lamb, J. D.; Christensen, J. J.; Sen, D. Chem. Rev. 1985, 85, 271 https://doi.org/10.1021/cr00068a003
  3. Shakir, M.; Varkey, S. P.; Namsmon, O. S. M. Polyhedron 1995, 14, 1283 https://doi.org/10.1016/0277-5387(94)00395-U
  4. Maji, M.; Chatterjee, M.; Ghosh, S.; Chattopahyay, S. K.; Wu, B. M.; Mak, T. C. W. J. Chem. Soc. Dalton Trans. 1999, 135
  5. Sengupta, P.; Dinda, R.; Ghosh, S.; Sheldrick, W. S. Polyhedron 2003, 22, 447 https://doi.org/10.1016/S0277-5387(02)01363-3
  6. Pujar, M. A.; Hadimani, B. S.; Gaddad, S. M.; Neelgund, Y. F. Curr. Sci. 1986, 55, 353
  7. Mishra, L.; Jha, A.; Yadav, A. K. Trans. Met. Chem. 1977, 22, 406 https://doi.org/10.1023/A:1018530422650
  8. Mishra, L. J. Ind. Chem. Soc. 1999, 76, 175
  9. David, A. B.; Andrew, L. R. Inorg. Chem. 1983, 22, 2199 https://doi.org/10.1021/ic00157a021
  10. DeFlora, S.; Wetterhahn, K. E. Life Chem. Rep. 1989, 7, 169
  11. Salnikow, K.; Zhitkovich, A.; Costa, M. Carcinogenesis 1992, 13, 2341 https://doi.org/10.1093/carcin/13.12.2341
  12. Wolf, T. H.; Kasemann, R.; Ottenwalder, H. Carcinogenesis 1989, 10, 655 https://doi.org/10.1093/carcin/10.4.655
  13. Arakawa, H.; Ahmad, R.; Naoui, M. J. Biol. Chem. 2000, 275, 10150 https://doi.org/10.1074/jbc.275.14.10150
  14. Maurya, M. R. Coord. Chem. Rev. 2003, 237, 163 https://doi.org/10.1016/S0010-8545(02)00293-X
  15. Maurya, M. R.; Maurya, R. C. Rev. Inorg. Chem. 1995, 15, 1 https://doi.org/10.1515/REVIC.1995.15.1-2.1
  16. Maurya, M. A.; Bharti, N. Trans. Met. Chem. 1999, 24, 389 https://doi.org/10.1023/A:1006942231677
  17. Berezovsky, F.; Hajem, A. A.; Pala, J. S.; Molinie, P. Inorg. Chem. Acta 1999, 284, 8 https://doi.org/10.1016/S0020-1693(98)00263-1
  18. Akhriff, Y.; Sancho, A.; Folgado, J. V.; Soto, L. Inorg. Chem. 1999, 38, 1174 https://doi.org/10.1021/ic980982x
  19. Decurtins, S.; Schmalle, H. W.; Hauser, A. Inorg. Chem. 1996, 35, 1451 https://doi.org/10.1021/ic950791j
  20. Mathoniere, C.; Nuttall, C. J.; Carling, S. G.; Day, P. Inorg. Chem. 1996, 35, 1201 https://doi.org/10.1021/ic950703v
  21. Ruiz-Perez, C.; Hernandez-Molina, M.; Lloret, F.; Cano, J.; Julve, M. Inorg. Chem. 2000, 39, 3845 https://doi.org/10.1021/ic000314n
  22. Cstro, I.; Sletten, J.; Cano, J.; Julve, M. J. Chem. Soc. Dalton Trans. 1995, 3207
  23. Mautner, F. A.; Insausti, M.; Arriortua, M. I.; Rojo, T. Inorg. Chem. 1998, 37, 3243 https://doi.org/10.1021/ic9800132
  24. Colacio, E.; Kivekas, R.; Moreno, J. M.; Romerosa, A.; Ruiz, J. Inorg. Chim. Acta 1993, 212, 115 https://doi.org/10.1016/S0020-1693(00)92316-8
  25. Bernhardt, P. V.; Sharpe, P. C. Inorg. Chem. 1998, 37, 1629 https://doi.org/10.1021/ic971020d
  26. Bernhardt, P. V.; Byriel, K. A.; Kennard, C. H. L.; Sharpe, P. C. J. Chem. Soc. Dalton Trans. 1996, 145
  27. Bernhardt, P. V.; Bramely, R.; Engelhardt, L. M.; Harrowfield, J. M.; Hockless, D. C.; Krausz, E. R.; Morgan, T.; Sargeson, A. M.; Sketon, B. W.; White, A. H. Inorg. Chem. 1995, 34, 3589 https://doi.org/10.1021/ic00118a005
  28. Bernhardt, P. V. Inorg. Chem. 1999, 38, 3481 https://doi.org/10.1021/ic990074f
  29. Simon, E.; Haridon, P. L.; Pichon, R.; Her, M. L. Inorg. Chim. Acta 1998, 282, 173 https://doi.org/10.1016/S0020-1693(98)00220-5
  30. Solvilj, S. P.; Vuckovic, G.; Babic, K.; Matsumoyo, N.; Jovanic, V. M. J. Coord. Chem. 1994, 31, 167 https://doi.org/10.1080/00958979408024212
  31. House, D. A.; Hay, R. W.; Ali, M. A. Inorg. Chim. Acta 1983, 72, 239 https://doi.org/10.1016/S0020-1693(00)81726-0
  32. Watson, A.; House, D. A. Inorg. Chim. Acta 1985, 97, L45 https://doi.org/10.1016/S0020-1693(00)86570-6
  33. Choi, J. H. Spectrochim. Acta, Part A 2000, 56, 1653 https://doi.org/10.1016/S1386-1425(00)00221-3
  34. Eriksen, J.; Monsted, L.; Monsted, O. Inorg. Chim. Acta 2002, 337, 143 https://doi.org/10.1016/S0020-1693(02)00996-9
  35. Byun, J. C.; Han, C. H. Bull. Korean Chem. Soc. 2004, 25, 977 https://doi.org/10.5012/bkcs.2004.25.7.977
  36. Sheldrick, G. M. Acta Crystallogr. 1990, A46, 467
  37. Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures; University of Gottingen: Germany, 1997
  38. Malcoim, A. D. L.; Xianhui, B.; Peter, C. F. Inorg. Chim. Acta 2000, 300-302, 944 https://doi.org/10.1016/S0020-1693(00)00027-X
  39. Bosnich, B.; Poon, C. K.; Tobe, M. L. Inorg. Chem. 1965, 4, 1102 https://doi.org/10.1021/ic50030a003
  40. Felix, V.; Santos, T. M.; Calhorda, M. J. Inorg. Chim. Acta 2003, 356, 335 https://doi.org/10.1016/S0020-1693(03)00372-4
  41. House, D. A.; Steel, P. J. Inorg. Chim. Acta 1998, 269, 229 https://doi.org/10.1016/S0020-1693(97)05798-8
  42. Choi, J. H.; Suzuki, T.; Subhan, M. A.; Kaizaki, S.; Park, Y. C. Acta Cryst. 2002, C58, m409
  43. Su, C. C.; Wu, S. P.; Chang, T. Y. Polyhedron 1995, 14, 267 https://doi.org/10.1016/0277-5387(94)00178-H
  44. Jose, P.; Ooi, S.; Fernando, Q. J. Inorg. Nucl. Chem. 1969, 31, 1971 https://doi.org/10.1016/0022-1902(69)90011-6
  45. Simon, E.; Haridon, P. L.; Pichon, R.; Her, M. L. Inorg. Chim. Acta 1998, 282, 173 https://doi.org/10.1016/S0020-1693(98)00220-5
  46. Hodgson, D. J.; Pedersen, E.; Toftlund, H.; Weiss, C. Inorg. Chim. Acta 1986, 120, 177 https://doi.org/10.1016/S0020-1693(00)86106-X
  47. Chan, A. S.; Laneman, S. A.; Day, C. X. Inorg. Chim. Acta 1995, 228, 159 https://doi.org/10.1016/0020-1693(94)04167-T
  48. Li, S. A.; Li, D. F.; Duan, C. Y.; Tang, W. X. Inorg. Chem. Comm. 2001, 4, 651 https://doi.org/10.1016/S1387-7003(01)00304-5
  49. Zhao, X. J.; Du, M.; Wang, Y.; Bu, X. H. J. Mol. Struc. 2004, 692, 155 https://doi.org/10.1016/j.molstruc.2004.01.025
  50. Eriksen, J.; Monsted, O. Acta Chem. Scand. 1983, A37, 579
  51. Ferguson, J.; Tobe, M. L. Inorg. Chim. Acta 1970, 4, 109 https://doi.org/10.1016/S0020-1693(00)93250-X
  52. Kane-Maguire, N. A. P.; Kevin, C. W.; David, B. M. Inorg. Chem. 1985, 24, 597 https://doi.org/10.1021/ic00198a033
  53. El-Shahawi, M. S. Spectrochim. Acta, Part A 1996, 52, 139
  54. El-Shahawi, M. S. Spectrochim. Acta 1995, 51A, 161
  55. Ueki, S.; Yamauchi, J. Inorg. Chim. Acta 2002, 338, 13 https://doi.org/10.1016/S0020-1693(02)00899-X
  56. Choi, J. H.; Linder, R.; Schonherr, T. Chemical Physics 2004, 297, 7 https://doi.org/10.1016/j.chemphys.2003.09.037
  57. Socrates, G. Infrared and Raman Characteristic Group Frequencies, 3rd ed; John Wiley & Sons: New York, 2001
  58. Su, C. C.; Wu, S. P.; Wu, C. Y.; Chang, T. Y. Polyhedron 1995, 14, 267 https://doi.org/10.1016/0277-5387(94)00178-H
  59. Paulovicova, A.; El-Ayaan, U.; Fukuda, Y. Inorg. Chim. Acta 2001, 321, 56 https://doi.org/10.1016/S0020-1693(01)00514-X
  60. Tayyari, S. F.; Raissi, H.; Ahmadabadi, Z. Spectrochim. Acta, Part A 2002, 58, 2669 https://doi.org/10.1016/S1386-1425(02)00013-6
  61. Andruh, M.; Melanson, R.; Stager, C. V.; Rochon, F. D. Inorg. Chim. Acta 1996, 251, 309 https://doi.org/10.1016/S0020-1693(96)05284-X
  62. Lescouezec, R.; Marinescu, G.; Andruh, M.; Julve, M. Inorg. Chim. Acta 2003, 350, 131 https://doi.org/10.1016/S0020-1693(02)01503-7
  63. Taha, A. Spectrochim. Acta, Part A 2003, 59, 1373 https://doi.org/10.1016/S1386-1425(02)00337-2
  64. Byun, J. C.; Han, C. H. Bull. Korean Chem. Soc. 2005, 26, 634 https://doi.org/10.5012/bkcs.2005.26.4.634
  65. Fujino, T.; Hoshino, Y.; Igarashi, S.; Masuda, Y.; Yukawa, Y. Inorg. Chim. Acta 2004, 357, 11 https://doi.org/10.1016/S0020-1693(03)00435-3

Cited by

  1. Studies on chromium(III) complexes with active nitrogen, oxygen and sulfur donor ketimines synthesized under microwave conditions vol.31, pp.6, 2010, https://doi.org/10.1080/17415993.2010.513438
  2. Synthesis, Crystal Structure and Spectroscopic Properties of (Acetylacetonato)(1,4,8,11-tetraazacyclotetradecane)chromium(III) Diperchlorate vol.637, pp.14-15, 2011, https://doi.org/10.1002/zaac.201100423
  3. Crystal structure and conformational analysis of s-cis-(acetylacetonato)(ethylenediamine-N,N′-diacetato)-chromium(III) vol.18, pp.5, 2012, https://doi.org/10.1007/s00894-011-1185-2
  4. Effect of precursor sol pH on microstructural, optical and photocatalytic properties of vacuum annealed zinc tin oxide thin films on glass vol.67, pp.1, 2013, https://doi.org/10.1007/s10971-013-3045-2
  5. Structural, spectroscopic, and biological aspects of S∩N donor Schiff-base ligands and their chromium(III) complexes vol.63, pp.10, 2005, https://doi.org/10.1080/00958972.2010.489110
  6. Real-time humidity-sensing properties of ionically conductive Ni(II)-based metallo-supramolecular polymers vol.2, pp.21, 2005, https://doi.org/10.1039/c4ta00884g
  7. Phenol oxidation through its adduct formation with chromium complex of 1,4,8,11-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane: A theoretical study vol.1133, pp.None, 2005, https://doi.org/10.1016/j.molstruc.2016.11.089
  8. Hydrogen bond assisted interaction of glutamine with chromium (III) complex of 8-hydroxyquinoline: Experimental and theoretical studies vol.1155, pp.None, 2005, https://doi.org/10.1016/j.molstruc.2017.11.056
  9. Synthesis, crystal structure, and spectroscopic properties of bis(rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)(μ-1,2,3,4-oxalato)dichloridozincate(II)(μ-1,2,3-oxalato)dichrom vol.1221, pp.None, 2005, https://doi.org/10.1016/j.molstruc.2020.128711