DOI QR코드

DOI QR Code

Nickel-Catalyzed Coupling of Arenesulfonates with Primary Alkylmagnesium Halides

  • Cho, Chul-Hee (School of Chemical & Materials Engineering, Chung-Ang University) ;
  • Sun, Myung-Chul (School of Chemical & Materials Engineering, Chung-Ang University) ;
  • Park, Kwang-Yong (School of Chemical & Materials Engineering, Chung-Ang University)
  • Published : 2005.09.20

Abstract

Neopentyl arenesulfonates reacted with primary alkylmagnesium halides in the presence of $(PPh_3)_2NiCl_2$ to produce the corresponding alkylarenes. The efficiency of this coupling reaction considerably depends on the nature of catalyst and solvent. Highest yield was obtained by using three equivalents of Grignard reagent to a mixture of $(PPh_3)_2NiCl_2$ and arenesulfonate in refluxing $Et_2O$. This reaction represents a novel method allowing the efficient and creative substitution of sulfur-containing groups in aromatic compounds. It also shows that the alkyloxysulfonyl group might be a suitable alternative to halides and triflate in some circumstances.

Keywords

References

  1. Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E.; de Meijere, A.; Bäckvall, J. E.; Cacchi, S.; Hayashi, T.; Ito, Y.; Kosugi, M.; Murahashi, S. I.; Oshima, K.; Yamamoto, Y., Eds.; Wiley-Interscience: New York, 2002
  2. Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359 https://doi.org/10.1021/cr000664r
  3. Littke, A. F.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 41, 4176 https://doi.org/10.1002/1521-3773(20021115)41:22<4176::AID-ANIE4176>3.0.CO;2-U
  4. Stanforth, S. P. Tetrahedron 1998, 54, 263 https://doi.org/10.1016/S0040-4020(97)10233-2
  5. Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633 https://doi.org/10.1016/S0040-4020(02)01188-2
  6. Suzuki, A. J. Organomet. Chem. 1999, 576, 147 https://doi.org/10.1016/S0022-328X(98)01055-9
  7. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457 https://doi.org/10.1021/cr00039a007
  8. Farina, V.; Krishnamurthy, V.; Scott, W. J. The Stille Reaction; John Wiley & Sons: New York, 1998
  9. Farina, V.; Krishnamurthy, V.; Scott, W. J. Org. React. 1997, 50, 1
  10. Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508 https://doi.org/10.1002/anie.198605081
  11. Negishi, E. In Organozinc Reagents: A Practical Approach; Knochel, P.; Jones, P., Eds.; Oxford University Press: Oxford, 1999; Chapter 11, pp 213-243
  12. Knochel, P.; Almena Perea, J. J.; Jones, P. Tetrahedron 1998, 54, 8275 https://doi.org/10.1016/S0040-4020(98)00318-4
  13. Erdik, E. In Organozinc Reagents in Organic Synthesis; CRC Press: Boca Raton, 1996; Chapter 7, pp 271-343
  14. Negishi, E. Acc. Chem. Res. 1982, 15, 340 https://doi.org/10.1021/ar00083a001
  15. Whitcombe, N. J.; Hii, K. K.; Gibson, S. E. Tetrahedron 2001, 57, 7449 https://doi.org/10.1016/S0040-4020(01)00665-2
  16. Biffis, A.; Zecca, M.; Basato, M. J. Mol. Catal. A-Chem. 2001, 173, 249 https://doi.org/10.1016/S1381-1169(01)00153-4
  17. Shibasaki, M.; Boden, C. D. J.; Kojima, A. Tetrahedron 1997, 53, 7371 https://doi.org/10.1016/S0040-4020(97)00437-7
  18. Karlstram, A.; Sofia, E.; Itami, K.; Backvall, J.-E. J. Org. Chem. 1999, 64, 1745 https://doi.org/10.1021/jo982060h
  19. Busacca, C. A.; Eriksson, M. C.; Fiaschi, R. Tetrahedron Lett. 1999, 40, 3101 https://doi.org/10.1016/S0040-4039(99)00439-6
  20. Miller, J. A.; Farrell, R. P. Tetrahedron Lett. 1998, 39, 7275 https://doi.org/10.1016/S0040-4039(98)01587-1
  21. Tamao, K.; Kumada, M. In The Chemistry of the Metal-Carbon Bond; Hartley, F. R. Ed.; Wiley: New York, 1987; Vol. 4, p 820
  22. Kumada, M. Pure Appl. Chem. 1980, 52, 669 https://doi.org/10.1351/pac198052030669
  23. Tamao, K.; Sumitani, K.; Kiso, Y.; Zembayashi, M.; Fujioka, A.; Kodama, S.; Nakajima, I.; Minato, A.; Kumada, M. Bull. Chem. Soc. Jpn. 1976, 49, 1958 https://doi.org/10.1246/bcsj.49.1958
  24. Brase, S.; Kirchhoff, J. K.; Kobberling, J. Tetrahedron 2003, 59, 885 https://doi.org/10.1016/S0040-4020(02)01425-4
  25. Sammelson, R. E.; Kurth, M. J. Chem. Rev. 2001, 101, 137 https://doi.org/10.1021/cr000086e
  26. Franzen, R. Can. J. Chem. 2000, 78, 957 https://doi.org/10.1139/cjc-78-7-957
  27. Lorsbach, B. A.; Kurth, M. J. Chem. Rev. 1999, 99, 1549 https://doi.org/10.1021/cr970109y
  28. Andres, C. J.; Whitehouse, D. L.; Deshpande, M. S. Curr. Opin. Chem. Biol. 1998, 2, 353 https://doi.org/10.1016/S1367-5931(98)80009-4
  29. Deshpande, M. S. Tetrahedron Lett. 1994, 35, 5613 https://doi.org/10.1016/S0040-4039(00)77260-1
  30. Yu, K.-L.; Deshpande, M. S.; Vyas, D. M. Tetrahedron Lett. 1994, 35, 8919 https://doi.org/10.1016/0040-4039(94)88389-0
  31. Frenette, R.; Friesen, R. W. Tetrahedron Lett. 1994, 35, 9177 https://doi.org/10.1016/0040-4039(94)88458-7
  32. Blakey, S. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 6046 https://doi.org/10.1021/ja034908b
  33. Inoue, A.; Shinokubo, H.; Oshima, K. J. Am. Chem. Soc. 2003, 125, 1484 https://doi.org/10.1021/ja026758v
  34. Mayers, A. G.; Tanaka, D.; Mannion, K. R. J. Am. Chem. Soc. 2002, 124, 11250 https://doi.org/10.1021/ja027523m
  35. Stephan, M. S.; Taunissen, A. J. J. M.; Verzijl, G. K. M.; de Vries, J. G. Angew. Chem. Int. Ed. 1998, 37, 662 https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<662::AID-ANIE662>3.0.CO;2-0
  36. Goossen, L. J.; Paetzold, J. Angew. Chem. Int. Ed. 2002, 41, 1237 https://doi.org/10.1002/1521-3773(20020402)41:7<1237::AID-ANIE1237>3.0.CO;2-F
  37. Cho, C.-H.; Sun, M.; Seo, Y.-S.; Kim, C.-B.; Park, K. J. Org. Chem. 2005, 70, 1482 https://doi.org/10.1021/jo048300c
  38. Cho, C.-H.; Yun, H.-S.; Park, K. J. Org. Chem. 2003, 68, 3017 https://doi.org/10.1021/jo026449n
  39. Cho, C.-H.; Kim, I.-S.; Park, K. Tetrahedron 2004, 60, 4589 https://doi.org/10.1016/j.tet.2004.03.072
  40. Jensen, A. E.; Knochel, P. J. Org. Chem. 2002, 67, 79 https://doi.org/10.1021/jo0105787
  41. Kirchhoff, J. H.; Dai, C.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 41, 1945 https://doi.org/10.1002/1521-3773(20020603)41:11<1945::AID-ANIE1945>3.0.CO;2-7
  42. Dubner, F.; Knochel, P. Tetrahedron Lett. 2000, 41, 9233 https://doi.org/10.1016/S0040-4039(00)01671-3
  43. Littke, A. F.; Fu, G. C. Angew. Chem. Int. Ed. 1999, 38, 2411 https://doi.org/10.1002/(SICI)1521-3773(19990816)38:16<2411::AID-ANIE2411>3.0.CO;2-T
  44. Terao, J.; Watanabe, H.; Ikumi, A.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2002, 124, 4222 https://doi.org/10.1021/ja025828v
  45. Seo, Y.-S.; Yun, H.-S.; Park, K. Bull. Korean Chem. Soc. 1999, 20, 1345
  46. Kumada, M.; Tamao, K.; Sumitani, K. Org. Synth. Coll. Vol. 1988, 6, 407
  47. Morrell, D. G.; Kochi, J. K. J. Am. Chem. Soc. 1975, 97, 7262 https://doi.org/10.1021/ja00858a011
  48. Tamao, K.; Kiso, Y.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 4374 https://doi.org/10.1021/ja00767a075
  49. Consiglio, G.; Morandini, F.; Piccolo, O. Tetrahedron 1983, 9, 2699
  50. Hayashi, T.; Konishi, M.; Kumada, M. Tetrahedron Lett. 1979, 21, 1871
  51. Tamao, K.; Kiso, Y.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 9268 https://doi.org/10.1021/ja00781a070
  52. Cho, C.-H.; Kim, C.-B.; Sun, M.; Park, K. Bull. Korean Chem. Soc. 2003, 24, 1632 https://doi.org/10.5012/bkcs.2003.24.11.1632
  53. Johnstone, R. A. W.; McLean, W. N. Tetrahedron Lett. 1988, 29, 5553 https://doi.org/10.1016/S0040-4039(00)80811-4
  54. Hayashi, T.; Katsuro, Y.; Kumada, M. Tetrahedron Lett. 1980, 21, 3915 https://doi.org/10.1016/0040-4039(80)80215-2
  55. Wenkert, E.; Michelotti, E. L.; Swindell, C. S. J. Am. Chem. Soc. 1979, 2246
  56. Rudie, A. W.; Lichtenberg, D. W.; Katcher, M. L.; Davison, A. Inorg. Chem. 1978, 17, 2859 https://doi.org/10.1021/ic50188a035
  57. Blakey, S. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 6046 https://doi.org/10.1021/ja034908b
  58. Barder, T. E.; Buchwald, S. L. Org. Lett. 2004, 6, 2649 https://doi.org/10.1021/ol0491686
  59. Gomes, P.; Fillon, H.; Gosmini, C.; Labbe, E.; Perichon, J. Tetrahedron 2002, 58, 8417 https://doi.org/10.1016/S0040-4020(02)01030-X

Cited by

  1. Leaving group effect in the sulfonyl transfer reactions of aryl benzenesulfonates with Grignard reagents vol.98, pp.2, 2009, https://doi.org/10.1007/s11144-009-0053-x
  2. Nickel-Catalyzed Coupling of Arenesulfonates with Primary Alkylmagnesium Halides. vol.37, pp.5, 2006, https://doi.org/10.1002/chin.200605055
  3. Nickel-Catalyzed Hydrogenolysis of Arenesulfonates Using Secondary Alkyl Grignard Reagents vol.28, pp.2, 2005, https://doi.org/10.5012/bkcs.2007.28.2.281
  4. Parallel Synthesis of Unsymmetrical trans-Stilbenes vol.28, pp.7, 2007, https://doi.org/10.5012/bkcs.2007.28.7.1159
  5. Transition Metal-Catalyzed Direct Arylation of Substrates with Activated sp3-Hybridized C−H Bonds and Some of Their Synthetic Equivalents with Aryl Halides and Pseudohalides vol.110, pp.2, 2010, https://doi.org/10.1021/cr9000836