Nucleotide Sequence and Secondary Structure of 16S rRNA from Sphingomonas chungbukensis DJ77

Sphingomonas chungbukensis DJ77의 16S rRNA 염기서열과 이차구조

  • 이관영 (충북대학교 자연과학대학 생명과학부) ;
  • 권해룡 (충북대학교 자연과학대학 생명과학부) ;
  • 이원호 (충북대학교 자연과학대학 생명과학부) ;
  • 김영창 (충북대학교 바이오 연구소)
  • Published : 2005.06.01

Abstract

A 16S ribosomal RNA gene from S. chungbukensis DJ77 has been sequenced. This sequence had a length of 1,502 bp and was extended for 29 bp at 5' and for 37 bp at 3' from the partial sequence (1,435 bp) registered in 2000 year. Besides, 1 bp was newly added near to the 3' end. We made the secondary structure of the 16S rRNA based on E. coli model and found four specific regions. We found constant and variable regions in genus Sphingomonas as the result of multiple alignment of 16S rRNA gene sequences from Sphingomonas spp. and S. chungbukensis DJ77. We found a stem loop structure in S. chungbukensis DJ77, which was only discovered in C. jejuni to date. It showed the structural agreement despite the difference of the sequences from the both organisms. Finally, S. chungbukensis DJ77 belonged to cluster II (Sphingobium) group, after the classification using phylogenetic analysis and nucleotide signature analysis.

S. chungbukensis DJ77로부터 16S rRNA유전자의 염기서열을 분식하였다. 염기서열은 총 1,502 bp로 2000 년에 등록된 부분 서열(1,435 bp)보다 5' 방향과 3' 방향으로 29 bp와 37 bp 길이만큼 각각 확장하였으며, 1 bp가 추가로 삽입되었다. E. coli의 16S rRNA유전자를 모델로 이차구조를 제작하였으며, 네 부위가 특이적임을 발견하였다. Sphnigomonas spp.의 16S rRNA 서열과 S. chungbukensis DJ77의 다중서열검색 결과, Sphingomonas종에서만 나타나는 보존부위와 가변부위를 발견할 수 있었다. 특히, Campylobacter jejuni에서만 나타나는 것으로 알려진 긴 stem loop구조가 서열은 조금 다르지만 구조적 일치를 보이는 유사한 구조를 S. chungbukensis DJ77에서도 발견하였다. 결과적으로, 다중서열검색을 통해 제작한 계통수와 nucleotide signatures분석에 근거하여 S. chugukensis DJ77을 cluster II (Sphingobium)로 분류하였다.

Keywords

References

  1. Altschul, S.F., W. Gish, W. Miller, E.W Myers, and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Amann, R., W. Ludwig, and K.H. Schleifer. 1994. Identification of uncultured bacteria: a challenging task for molecular taxonomists. ASM News 60, 360-365
  3. Cannone, J.J. S. Subramanian, M.N. Schnare, J.R. Collett, L.M. D'Souza, Y. Du, B. Feng, N. Lin, L.V. Madabusi, K.M. Muller, N. Pande, Z. Shang, N. Yu, and R.R. Gutell. 2003. The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 2002. 3, 2-31 https://doi.org/10.1186/1471-2105-3-2
  4. DeLong, E.F., G.S. Wickham, and N.R. Pace. 1989. Phylogenetic stains: ribosomal RNA-based probes for the identification of single sells. Science 243, 1360-1363 https://doi.org/10.1126/science.2466341
  5. Hwang, S., S.J. Kim, C.K. Kim, Y. Kim, S.J. Kim, and Y.C. Kim. 1999. The phnIJ genes encoding acetaldehyde dehydrogenase (acylating) and 4-hydroxy-2-oxovalerate aldolase in Pseudomonas sp. DJ77 and their evolutionary implications. Biochem. Biophys. Res. Commun. 256, 469-473 https://doi.org/10.1006/bbrc.1999.0355
  6. Kim, C.K., J.W. Kim, Y.C. Kim, and T.L. Mheen. 1986. Isolation of aromatic hydrocarbon-degrading bacteria and genetic characterization of their plasmid genes. Kor. J. Microbiol. 24, 67-72
  7. Kim, S.J., H.J. Shin, Y. Kim, S.J. Kim, and Y.C. Kim. 1997b. Nucleotide sequence of the Pseudomonas sp. DJ77 phnG gene encoding 2-hydroxymuconic semialdehyde dehydrogenase. Biochem. Biophys. Res. Commun. 240, 41-45 https://doi.org/10.1006/bbrc.1997.7595
  8. Kim, S.J., J. Chun, K.S. Bae, and Y.C. Kim. 2000. Polyphasic assignment of an aromatic-degrading Pseudomonas sp., strain DJ77, in the genus Sphingomonas as Sphingomonas chungbukensis sp. nov.. Int. J. Syst. Evol. Microbiol. 50, 1641-1647 https://doi.org/10.1099/00207713-50-4-1641
  9. Liesack, W., and E. Stackebrandt. 1992. Occurence of novel groups of the domain bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J. Bacteriol. 174, 5072-5078 https://doi.org/10.1128/jb.174.15.5072-5078.1992
  10.  Maidak, B.L., J.R. Cole, T.G. Lilburn, C.T. Jr. Parker, P.R. Saxman, J.M. Stredwick, G.M. Garrity, B. Li, G.J. Olsen, S. Pramanik, T.M. Schmidt, and J.M. Tiedje. 2000. The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28, 173-174 https://doi.org/10.1093/nar/28.1.173
  11.  Mathews, D.H., M.D. Disney, J.L. Childs, S.J. Schroeder, M. Zuker, and D.H. Turner. 2004. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc. Natl. Acad. Sci. USA 101, 7287-7292
  12.  Pace, N.R. 1997. A molecular view of microbial diversity and the biosphere. Science 276, 734-740 https://doi.org/10.1126/science.276.5313.734
  13.  Retief J.D. 2000. Phylogenetic analysis using PHYLIP. Methods Mol. Biol. 132, 243-258
  14.  Takuchi, M., K. Hamana, and A. Hiraishi. 2001. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphinogobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int. J. Syst. Evol. Microbiol. 51, 1405-1417 https://doi.org/10.1099/00207713-51-4-1405
  15.  Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882 https://doi.org/10.1093/nar/25.24.4876
  16. Woese, C.R. 1987. Bacterial evolution. Microbiol. Rev. 51, 221-271