Preparation of Asymmetric Folyethersulfone Hollow Fiber Membranes for Flue Gas Separation

온실기체 분리용 폴리이서설폰 비대칭 중공사 막의 제조

  • Kim Jeong-Hoon (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology) ;
  • Sohn Woo-Ik (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology) ;
  • Choi Seung-Hak (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology, Green Chemistry and Environmental Biotechnology, University of Science and Technology) ;
  • Lee Soo-Bok (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology)
  • 김정훈 (한국화학연구원 계면재료공정연구팀) ;
  • 손우익 (한국화학연구원 계면재료공정연구팀) ;
  • 최승학 (한국화학연구원 계면재료공정연구팀, 과학기술연합대학원대학교 청정화학 및 생물) ;
  • 이수복 (한국화학연구원 계면재료공정연구팀)
  • Published : 2005.06.01

Abstract

It is well-known that polyethersulfone (PES) has high $CO_2$ selectivity over $N_2\;(or\;CH_4)$ and excellent pressure resistance of $CO_2$ plasticization among muy commercialized engineering plastics[1-4]. Asymmetric PES hollow fiber membranes for flue gas separation were developed by dry-wet spinning technique. The dope solution consists of PES, NMP and acetone. Water and water/NMP mixtures are used in outer and inner coagulants, respectively. Gas permeation rate (i.e., permeance) and $CO_2/N_2$ selectivity were measured with pure gas, respectively and the micro-structure of hollow fiber membranes was characterized by scanning electron microscopy. The effects of polymer concentration, ratio of NMP to acetone, length of air gap, evaporation condition and silicone coating were investigated on the $CO_2/N_2$ separation properties of the hollow fibers. Optimized PES hollow fiber membranes exhibited high permeance of $25\~50$ GPU and $CO_2/N_2$ selectivity of $30\~40$ at room temperature and have the apparent skin layer thickness of about $0.1\;{\mu}m$. The developed PES hollow fiber membranes, would be a good candidate suitable for the flue gas separation process.

폴리이서설폰은 상용화된 엔지니어링 고분자 소재 중에서 이산화탄소/질소 및 이산화탄소/메탄의 분리 능력이 아주 우수하면서 이산화탄소에 대한 가소화에 대한 저항력이 아주 뛰어난 것으로 알려져 있다[1-4]. 본 연구에서는 연소 배가스내 이산화탄소의 분리/회수를 위하여 건-습식 상전이법에 의해 비대칭구조의 폴리이서설폰 중공사막을 제조하였다. 제막용액은 고비점이면서 폴리이서설폰의 용매인 NMP와 저 비점의 폴리이서설폰의 팽윤제인 acetone를 일정한 조성으로 함께 녹여서 제조하였다. 방사용액의 농도, NMP와 acetone의 비, 방사높이, 증발조건, 실리콘 코팅조건을 변화시키면서 중공사를 제조하였으며, 얻어진 중공사막의 이산화탄소와 질소에 대한 기체투과도와 선택도는 순수기체를 통하여 측정하였다. 최적의 PES 중공사막은 PES/Acetone/NMP = 30/35/35 $wt\%$ 방사용액과 실리콘의 코팅조건하에 제조된 것으로 폴리이서설폰 소재 자체의 고유선택도인 $30\~40$$CO_2/N_2$ 선택도를 보였으며 $25\~50$ GPU의 이산화탄소 투과플럭스를 보였다. 이러한 선택도와 투과도로부터 계산된 중공사 외표면의 선택층의 두께는 $0.1\;{\mu}m$였다. 제조된 폴리이서설폰중공사막이 향후 연소 배가스내 이산화탄소 분리/회수용 막분리 공정에 적용될 경우 우수한 결과를 보일 것으로 예측된다.

Keywords

References

  1. D. L. Ellig, J. B. Althouse, and F. P. McCandless, 'Concentration of methane from mixtures with carbon dioxide by permeation through polymeric films', J. Membr. Sci., 6, 259 (1980)
  2. G. C. Kapantaidakis and G. H. Koops, 'High flux polyethersulfone-polyimide blend hollow fiber membranes for gas separation', J. Membr. Sci., 204, 153 (2002)
  3. I. Pinnau, J. Wind, and K. V. Peinemann, 'Ultrathin multicomponent poly( ether sulfone) membranes for gas separation made by dry/wet phase inversion', Ind. Eng. Chem. Res., 29, 2028 (1990)
  4. W. H. Mazur and M. C. Chan, 'Membranes for natural gas sweetening and $CO_2$ enrichment', Chemical Engineering Process, Oct., 38 (1982)
  5. R. L. Schedel, D. L. Mariz, and J. Y. Mak, 'Is permeation competitive?', Hydrocarbon Processing, Aug., 59 (1983)
  6. R. W. Spillman, 'Economics of gas separation membranes', Chemical Engineering Progress, 41 (1989)
  7. R. L. Mckee, M. K. Change la, and G. J. Reading, '$CO_2$ removal : Membrane plus amine', Hydrocarbon Processing, Apr., 63 (1991)
  8. P. J. Cook, 'Membranes provide cost-effective natural gas processing', Hydrocarbon Processing, Apr., 79 (1995)
  9. H. Ohya, V. V. Kudryavtsev, and S. I, Semenova, Chap. 4, Separation properties of polymer, Polyimide Membranes-Applications, Fabrications, and Properties,; R. E. Kesting, and A. K. Fritzsche, Chap. 3, Membrane polymer; Polymeric Gas Separation Membranes (1993)
  10. R. Baker, 'Future directions of membrane gas separation technology', Membr. Tech., 138, 5 (2002)
  11. Y. Hiarayama, S. Kazama, E. Fujisawa, M. Nakabayashi, N. Matsumiya, K. Takagi, K. Okabe, H. Mano, K. Haraya, and C. Kamizawa, 'Novel membranes for carbon dioxide separation', Energy Conservs. Mgmt., 36(6-9), 435 (1995)
  12. S. Kazama, T. Teramoto, and K. Haraya, 'Carbon dioxide and nitrogen transport properties of bis (phenyl) fluorene-based cardo polymer membranes', J. Membr. Sci., 207, 91 (2002)
  13. H. Mano, '$CO_2$ 分離用 cardo形 polymer膜-開發, 工業材料', 48(8), 21 (2000)
  14. G. C. Kapantaidakis, 'Simulation of gas separation in hollow fiber membranes by orthogonal collocationapplication to the recovery of carbon dioxide from flue gases in a polyimide pilot plant unit', NAMS'98, Cleveland, Ohio (1998)
  15. T. Chung. W. Lin, and R. H. Yora, 'The effect of shear rates on gas separation performances of 6FDA-durene polyimide hollow fibers', J. Membr. Sci., 167, 55 (2000) https://doi.org/10.1016/S0376-7388(99)00278-1
  16. H. Suzuki, K. Tanaka, H. Kita, K. Okamoto, H. Hoshino, T. Yoshinaga, and Y. Kusuki, 'Preparation of composite hollow fiber membranes of poly( ethylene oxide )-containing polyimide and their $CO_2/N_2$ separation properties', J. Membr. Sci., 146, 31 (1998)
  17. D. Wang, K. Li, and W. K. Teo, 'Highly permeable polysulfone hollow fiber gas separation membranes prepared using water as non-solvent additive', J. Membr. Sci., 176, 147 (2000)
  18. J. Ren, T-Chung, D. Li, R. Wang, and Y. Liu, 'Development of asymmetric 6FDA-2,6 DAT hollow fiber membranes for $CO_2/CH_4$ separation I. The influence of dope composition and rheology on membrane morphology and separation performance', J. Membr. Sci., 207, 227 (2002)
  19. K. Haraya, K. Obata, N. Itoh, Y. Shnod, T. Hakuta, and H. Y oshitome, 'Gas permeation and separation by an asymmetric polyimide hollow fiber membrane', J. Membr. Sci., 41, 23 (1989)