초록
본 논문에서는 특징점 기반 영상 모자익을 위해 보로노이거리를 이용하여 두 영상의 대응점을 신속히 검색하는 영상정합 방법을 제안한다. 먼저 SUSAN 코너 검출기에 의해 정차하고자 하는 영상의 특징점을 추출한 후, 기준 영상의 특징점을 기반으로 우선 순위 기반 보로노이 거리 알고리즘을 이용하여 특징점 사이의 거리 정보를 가지는 보로노이 평면을 생성한다. 모델 영상에서 특징점 위치의 분산값이 가장 큰 곳을 모델 영역으로 선택하여, 모델 영역이 포개지는 기준 영상의 보로노이 평면에서 보로노이 거리의 합이 최소화되는 대응 영역을 큐를 이용한 분할 검색 알고리즘에 의해 찾아낸다. 이 방법의 장점은 새로운 보로노이 거리 계산 알고리즘과 보로노이 평면의 검색범위를 매번 최대 1/4씩 줄여 주는 큐를 이용한 분할 검색 알고리즘을 이용함으로써 보다 신속히 대응점을 찾을 수 있다는 것이다.
In this paper, we propose a technique which is speedily searching for correspondent points of two images using Voronoi-Distance, as an image registration method for feature based image mosaics. It extracts feature points in two images by the SUSAN corner detector, and then create not only the Voronoi Surface which has distance information among the feature points in the base image using a priority based Voronoi distance algorithm but also select the model area which has the maximum variance value of coordinates of the feature points in the model image. We propose a method for searching for the correspondent points in the Voronoi surface of the base image overlapped with the model area by use of the partitive search algorithm using queues. The feature of the method is that we can rapidly search for the correspondent points between adjacent images using the new Voronoi distance algorithm which has $O(width{\times}height{\times}logN)$ time complexity and the the partitive search algerian using queues which reduces the search range by a fourth at a time.