DOI QR코드

DOI QR Code

질감을 이용한 차량모델 인식 알고리즘

Algorithm Based on Texture for the Recognition of Vehicles' Model

  • 이효종 (전북대학교 전자정보공학부)
  • 발행 : 2005.06.01

초록

사회가 발전하면서 자동차의 수요도 세계적으로 급증하고 있다. 교통제어나 차량에 연관된 범죄 둥을 해결하는데 자동차의 인식 기술이 중요하기 때문에 이에 관련된 번호판 인식이나 교통량 측정에 관한 연구는 오래 전부터 수행되어왔다. 본 논문에서는 주행차량의 제조회사와 차량 모델을 인식하는 방법을 제시하였다. 차종의 인식은 차량 전면부 영역의 질감을 이용하여 인식하였다. 번호판 상단의 라디에이터 영역에서 질감 특징자를 추출하여 신경망을 통한 차종별 학습을 시켜서 인식을 시도하였다. 제안 알고리즘에서 차종의 정인식은 $93.7\%$, 이종차량의 감별은 $99.7\%$로 양호하게 나타났다.

The number of vehicles are rapidly increased as our society is developed. The vehicle recognition has been studied for a while because many people acknowledged it has critical functions to solve the problems of traffic control or vehicle-related crimes. In this paper a novel method is proposed to recognize vehicle models corresponding makers. Vehicles' models are recognized based on the texture parameters from segmented radiator region above a number plate. A three-layer neural network was built and trained with the texture features for recognition. The proposed method shows $93.7\%$ of recognition rate and $99.7\%$ of specificity for vehicles' model.

키워드

참고문헌

  1. Wu Wei, Yuzhi Li, Mingjun Wang, and Zhongxiang Huang, 'Research on number-plate recognition based on neural networks', Proceedings of the 2001 IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing XI, pp.529-538, 2001 https://doi.org/10.1109/NNSP.2001.943157
  2. R.Parisi, E.D.Di Claudio, G.Lucarelli and G.Orlandi 'Car Plate Recognition by Neural Networks and Image Processing' Proceedings of the IEEE International Symposium on Circuits and Systems, Vol.3, pp.195-198, 1998 https://doi.org/10.1109/ISCAS.1998.703970
  3. Toru Ikeda, Shinish Ohnaka, and Masanori Mizoguchi, 'Traffic measurement with a roadside vision system-individual tracking of overlapped vehicles', Proceedings of International Conference on Pattern Recognition, Vol.3, pp. 859-864, 1996 https://doi.org/10.1109/ICPR.1996.547290
  4. K. Nishiyama, K. Kato, T. Hinenoya, and T. Negishi, 'Image processing system for traffic measurement', Proceedings on the Industrial Electronics, Control and Instrumentation https://doi.org/10.1109/IECON.1991.239255
  5. J. R. Parker 'Algorithms for Image Processing and Computer Vision' Wiley Computer Publishing, 1998
  6. Rchard O. Duda, Peter E. Hart, David G. Stork 'Pattern Classification' Wiley Interscience
  7. Kohtaro Ohba and Katsushi Ikeuchi, 'Detectability, Uniqueness, and Reliability of Eigen Windows for Stable Verification of Partially Occluded Objects', IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.19, No.9, pp.1043-1048, 1997 https://doi.org/10.1109/34.615453
  8. H. Murase and S. Nayar, 'Visual Learning and Recognition of 3D Objects from Appearance', International Journal of Computer Vision, Vol.14, pp.5-24, 1995 https://doi.org/10.1007/BF01421486
  9. Masataka Kagesawa, Shinichi Ueno, Katsushi Ikeuchi,and Hiroshi Kashiwagi, 'Local-Feature Based Vehicle Recognition Infra-Red Images Using Parallel Vision Board', Proceedings of the IEEE International Conference on Intelligent Robots and systems, pp.1828-1833, 1999 https://doi.org/10.1109/IROS.1999.811744
  10. Kyoung-Mi Lee and W. Nick Street, 'Automatic Image Segmentation and Classification Using On-line shape Learning', Proceedings of the IEEE Workshop on Applications of Computer Vision, pp.64-70, 2000 https://doi.org/10.1109/WACV.2000.895404
  11. A. Schanz, C. Knoeppel, and B. Michaelis, 'Robust Vehicle Detection at large Distance Using Low Resolution Cameras', Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 267-272, 2000 https://doi.org/10.1109/IVS.2000.898353
  12. Wei Wu, Zhang QiSen, and Wang Mingjun, 'A Method of Vehicle classification Using Models and Neural Networks', Proceedings of the IEEE Conference on Vehicular Technology Conference, Vol.4, pp.3022-3026, 2001 https://doi.org/10.1109/VETECS.2001.944158
  13. Xia Limin, 'Vehicle Shape Recovery and Recognition Using Generic Models', Proceedings of the 4th World Congress on Intelligent control and Automation, pp.1055-1059, 2002 https://doi.org/10.1109/WCICA.2002.1020738
  14. Wang Shaolin and Zheng Xiaosong, 'Hough Transform: It's Application to the Linearly Moving Point Targets Detection', Proceedings of the IEEE International Symposium on Speech, Image Processing and Neural Networks, pp.795-797, 1994 https://doi.org/10.1109/SIPNN.1994.344791
  15. R.Parisi, E.D.Di Claudio, G.Lucarelli and G.Orlandi 'Car Plate Recognition by Neural Networks and Image Processing' Proceedings of the IEEE International Symposium on Circuits and Systems, Vol.3, pp.195-198, 1998 https://doi.org/10.1109/ISCAS.1998.703970
  16. I, Pitas, 'Digital Image Processing Algorithms and Applications', Wiley Inter-Science, 2000