Bias-Dependent Data Extraction of Gate Impedance Model Parameters for RF MOS Transistors

RF MOS 트랜지스터를 위한 게이트 임피던스 모델 파라미터의 바이어스 종속 데이터 추출

  • Choi Munsung (School of Electronics and Information Engineering, Hankuk University of Foreign Studies) ;
  • Lee Yongtaek (School of Electronics and Information Engineering, Hankuk University of Foreign Studies) ;
  • Ku Janam (MEMS Lab., Samsung Advanced Institute of Technology) ;
  • Lee Seonghearn (School of Electronics and Information Engineering, Hankuk University of Foreign Studies)
  • 최문성 (한국외국어대학교 전자정보공학부) ;
  • 이용택 (한국외국어대학교 전자정보공학부) ;
  • 구자남 (삼성종합기술원 MEMS Lab) ;
  • 이성현 (한국외국어대학교 전자정보공학부)
  • Published : 2005.05.01

Abstract

A RC parallel gate model is used to consider gate distributed effect that affects RF MOSFET performance, and extraction formula based on $Y_{11}$-parameters are used to extract model parameters directly from measured S-parameters. Better agreement between measured and modeled S-parameters in the frequency range beyond 10 GHz is achieved by using the RC parallel model than conventional Rg one, demonstrating the accuracy of the RC model and extraction technique. Using these extraction methods, gate voltage dependent curves of RC gate model parameters are newly extracted, and these parameter data will greatly contribute to developing a RF nonlinear gate model.

본 연구에서는 MOSFET의 RF 성능에 영향을 미치는 게이트 분포효과를 고려하여 RC 병렬 게이트 모델을 사용하였으며, 측정된 S-파라미터로부터 모델 파라미터들을 직접 추출하기 위해 $Y_{11}$-파라미터를 기초로 한 추출 방정식들이 사용되었다. 이와 같이 추출된 RC 병렬 게이트 모델은 10GHz 이상의 고주파 영역에서 기존 Rg 모델보다 측정된 S-파라미터와 더 잘 일치하는 것을 확인하였으며, 이는 게이트 모델 및 추출방법의 정확도를 증명한다. 이러한 방법을 사용하여 RC 병렬 게이트 모델 파라미터들의 게이트 전압 종속 곡선을 새롭게 추출하였으며, 이러한 추출 데이터는 RF 비선형 게이트 모델 개발에 유용하게 사용될 것이다.

Keywords

References

  1. N. Camilleri, J. Costa, D. Lovelace, and D. Ngo., 'Silicon MOSFET's, the microwave device technology for the 90s', in IEEE MIT-S int. Microwave Symp. Dig, pp. 545-548, 1993 https://doi.org/10.1109/MWSYM.1993.276880
  2. S. P. Voinigescu, S. Wind, Y. J. Mii, Y. Lii, D. Moy, K. A. Jenkins, C.L. Chen, P. J. Coane, D. Klaus, J. Bucchignano, M. Rosenfield, M. G. R. Thomson, and M. polcari, 'High performance 0.1um CMOS devices with 1.5V power supply', in Tech. Dig. Int. Electron Devices Meet, pp. 127-130, 1993
  3. M. Bagheri, Y. Tsividis, 'A small-signal DC-to-high frequency nonquasistatic model for the four-terminal MOSFET valid in all regions of operation', IEEE Trans. Electron Devices, pp, 2383-2391, 1985 https://doi.org/10.1109/T-ED.1985.22284
  4. P. J. V. Vandeloo, W. M. C. Sansen, 'Modeling of the MOS transistor for high frequency analog design', IEEE Trans. Computer-Aided Design, pp.713 - 723, July 1989 https://doi.org/10.1109/43.31528
  5. L.-So Kim, R. W. Dutton, 'Modeling of the distributed gate RC effect in MOSFET's', IEEE Trans. Computer-Aided Design, vol. 8, pp.1365-1367, Dec. 1989 https://doi.org/10.1109/43.44517
  6. B. Razavi, R. H, Yan, and K, F. Lee, 'Impact of distributed gate resistance on the performance of MOS devices', IEEE Trans. Circuits and Systems I, vol. 41, pp.750-754, Nov. 1994 https://doi.org/10.1109/81.331530
  7. S. F. Tin, A. A. Osman, K. Mayaram, 'A small-signal MOSFET model for radio frequency IC applications', IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 17, pp. 372-374, April 1998 https://doi.org/10.1109/43.631207
  8. S. Lee, 'Effects of pad and interconnection parasitics on forward transit time in HBTs', IEEE Trans. Electron Devices, vol. 46, no. 2, pp. 275-278, Feb. 1999 https://doi.org/10.1109/16.740889
  9. S. Lee, C. S. Kim, and H. K Yu, 'A small-signal RF model and its parameter extraction for substrate effects in RF MOSFETs', IEEE Trans Electron Dev 48 (2001), pp. 1374-1379 https://doi.org/10.1109/16.930654
  10. S. Lee, 'Direct extraction technique for a small-signal MOSFET equivalent circuit with substrate parameters', Microwave and Optical tech Lett., vol. 39, no. 4, pp. 344-347, Nov 2003 https://doi.org/10.1002/mop.11210