Browse > Article

Bias-Dependent Data Extraction of Gate Impedance Model Parameters for RF MOS Transistors  

Choi Munsung (School of Electronics and Information Engineering, Hankuk University of Foreign Studies)
Lee Yongtaek (School of Electronics and Information Engineering, Hankuk University of Foreign Studies)
Ku Janam (MEMS Lab., Samsung Advanced Institute of Technology)
Lee Seonghearn (School of Electronics and Information Engineering, Hankuk University of Foreign Studies)
Publication Information
Abstract
A RC parallel gate model is used to consider gate distributed effect that affects RF MOSFET performance, and extraction formula based on $Y_{11}$-parameters are used to extract model parameters directly from measured S-parameters. Better agreement between measured and modeled S-parameters in the frequency range beyond 10 GHz is achieved by using the RC parallel model than conventional Rg one, demonstrating the accuracy of the RC model and extraction technique. Using these extraction methods, gate voltage dependent curves of RC gate model parameters are newly extracted, and these parameter data will greatly contribute to developing a RF nonlinear gate model.
Keywords
RF MOS; MOSFET model; parameter extraction; gate resistance; distributed effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L.-So Kim, R. W. Dutton, 'Modeling of the distributed gate RC effect in MOSFET's', IEEE Trans. Computer-Aided Design, vol. 8, pp.1365-1367, Dec. 1989   DOI   ScienceOn
2 B. Razavi, R. H, Yan, and K, F. Lee, 'Impact of distributed gate resistance on the performance of MOS devices', IEEE Trans. Circuits and Systems I, vol. 41, pp.750-754, Nov. 1994   DOI   ScienceOn
3 N. Camilleri, J. Costa, D. Lovelace, and D. Ngo., 'Silicon MOSFET's, the microwave device technology for the 90s', in IEEE MIT-S int. Microwave Symp. Dig, pp. 545-548, 1993   DOI
4 S. P. Voinigescu, S. Wind, Y. J. Mii, Y. Lii, D. Moy, K. A. Jenkins, C.L. Chen, P. J. Coane, D. Klaus, J. Bucchignano, M. Rosenfield, M. G. R. Thomson, and M. polcari, 'High performance 0.1um CMOS devices with 1.5V power supply', in Tech. Dig. Int. Electron Devices Meet, pp. 127-130, 1993
5 M. Bagheri, Y. Tsividis, 'A small-signal DC-to-high frequency nonquasistatic model for the four-terminal MOSFET valid in all regions of operation', IEEE Trans. Electron Devices, pp, 2383-2391, 1985   DOI
6 P. J. V. Vandeloo, W. M. C. Sansen, 'Modeling of the MOS transistor for high frequency analog design', IEEE Trans. Computer-Aided Design, pp.713 - 723, July 1989   DOI   ScienceOn
7 S. F. Tin, A. A. Osman, K. Mayaram, 'A small-signal MOSFET model for radio frequency IC applications', IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 17, pp. 372-374, April 1998   DOI   ScienceOn
8 S. Lee, 'Direct extraction technique for a small-signal MOSFET equivalent circuit with substrate parameters', Microwave and Optical tech Lett., vol. 39, no. 4, pp. 344-347, Nov 2003   DOI   ScienceOn
9 S. Lee, C. S. Kim, and H. K Yu, 'A small-signal RF model and its parameter extraction for substrate effects in RF MOSFETs', IEEE Trans Electron Dev 48 (2001), pp. 1374-1379   DOI   ScienceOn
10 S. Lee, 'Effects of pad and interconnection parasitics on forward transit time in HBTs', IEEE Trans. Electron Devices, vol. 46, no. 2, pp. 275-278, Feb. 1999   DOI   ScienceOn