DOI QR코드

DOI QR Code

나노기공성 기판을 사용한 산화물박막의 제조

Fabrication of Oxide Thin Films Using Nanoporous Substrates

  • 박용일 (금오공과대학교 신소재시스템공학부) ;
  • Park, Yong-Il (School of Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Prinz, Fritz B. (Department of Mechanical Engineering, Stanford University)
  • 발행 : 2004.12.01

초록

현재까지 개발되어 온 고체산화물 연료전지는 전해질로 사용되는 산소이온전도성 산화물의 저온에서의 낮은 전도도로 인해 그 사용영역이 제한되어 왔으며, 기판재료가 연료가스 확산층으로 사용되어야 한다는 점 때문에 저온작동을 위한 박막화 역시 명확한 한계를 가지고 있다. 이러한 문제점은 고도의 평활도를 갖는 균일한 나노기공성 기판재를 도입함으로써 해결될 수 있으며, 본 연구에서는 나노기공성 기판에 비정질 금속박막을 증착/산화하는 방안을 제시한다. 초박막형 성공정으로서, 산화 후 산소이온전도성 산화물을 구성하는 합금 타겟을 장착한 DC-magnetron sputter를 사용하여 $20{\sim}200nm$의 기공크기를 갖는 나노기공성 양극산화 알루미나 기판에 비정질 금속합금막을 형성하여 산화/열처리 과정을 거쳐 초박막 산화물 전해질의 제조공정을 실현하였다. 얻어진 박막의 가스투과특성, 입자/입계의 관찰, 상전이에 따른 결정구조/미세구조변화를 관찰하여 초박막 증착 및 전해질의 나노구조제어에 필요한 제반 기본물성데이터를 확보하였다.

Solid oxide fuel cells have a limitation in their low-temperature application due to the low ionic conductivity of electrolyte materials and difficulties in thin film formation on porous gas diffusion layer. These problems can be solved by improvement of ionic conductivity through controlled nanostructure of electrolyte and adopting nanoporous electrodes as substrates which have homogeneous submicron pore size and highly flattened surface. In this study, ultra-thin oxide films having submicron thickness without gas leakage are deposited on nanoporous substrates. By oxidation of metal thin films deposited onto nanoporous anodic alumina substrates with pore size of $20nm{\sim}200nm$ using dc-magnetron sputtering at room temperature, ultra-thin and dense ionic conducting oxide films with submicron thickness are realized. The specific material properties of the thin films including gas permeation, grain/gran boundaries formation, change of crystalline structure/microstructure by phase transition are investigated for optimization of ultra thin film deposition process.

키워드

참고문헌

  1. J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, and L. J. Gaukler, 'Fabrication of Thin Electrolytes for SecondGeneration Solid Oxide Fuel Cells,' Solid State Ionics, 131 79-96 (2000) https://doi.org/10.1016/S0167-2738(00)00624-X
  2. Y Jiang and A. V. Virkar, 'A High Performance, AnodeSupported Solid Oxide Fuel Cell Operating on Direct Methanol,' J. Electrochem. Soc., 148 [7] A706-A09 (2001) https://doi.org/10.1149/1.1375166
  3. B. Zhu, 'Advantages of Intermediate Temperature Solid Oxide Fuel Cells for Tractionary Applications,' J. Power Sources, 93 82-6 (2001) https://doi.org/10.1016/S0378-7753(00)00564-4
  4. R. Doshi, V. L. Richards, J. D. Carter, X. Wang, and M. Krumpelt, 'Development of Solid-Oxide Fuel Cells that Operate at $500^{\circ}C,' J. Electrochem. Soc., 146 [4] 1273-78 (1999) https://doi.org/10.1149/1.1391758
  5. B. C. H. Steele, 'Materials for IT-SOFC Stacks, 35 Years R&D: The Inevitability of Gradualness,' Solid State Ionics, 134 3-20 (2000) https://doi.org/10.1016/S0167-2738(00)00709-8
  6. J. Schoonman, J. P. Dekker, J. W. Briers, and N. J. Kiwiet, 'Electrochemical Vapor Deposition of Stabilized Zirconia and Interconnection Materials for Solid Oxide Fuel Cells,' Solid State Ionics, 46 [3-4] 299-308 (1991) https://doi.org/10.1016/0167-2738(91)90229-5
  7. L. S. Wang and S. A. Barnett, 'Sputter-Deposited Mediumtemperature Solid Oxide Fuel Cells with Multi-Layer Electrolyte,' Solid State Ionics, 61 273-76 (1993) https://doi.org/10.1016/0167-2738(93)90391-F
  8. A. F. Jankowski and J. P. Hayes, 'Reactive Sputter Deposition of Yttria-Stabilized Zirconia,' Suif. Coat. Tech., 7677 126-31 (1995)
  9. C. Xia, S. Zha, W. Yang, R. Peng, D. Peng, and G. Meng, 'Preparation of Yttria Stabilized Zirconia Membranes on Porous Substrates by a Dip-Coating Process,' Solid State Ionics, 133 287-94 (2000) https://doi.org/10.1016/S0167-2738(00)00743-8
  10. X. Changrong, C. Huaqiang, W. Hong, Y Pinghua, M. Guangyao, and P. Dingkun, 'Sol-Gel Synthesis of Yttria Stabilized Zirconia Membranes through Controlled Hydrolysis of Zirconium Alkoxide,' J. Membrane Sci., 162 181-88 (1999) https://doi.org/10.1016/S0376-7388(99)00137-4
  11. G. Koren, E. Polturak, B. Fisher, D. Cohen, and G. Kimel, 'Highly Oriented As-Deposited Superconducting Laser Ablated Thin Films of $Y_1Ba_2Cu_3O_{7-\delta} on SrTiO_{3,}$ Zirconia, and Si Substrates,' Appl. Phys. Lett., S3 2330-32 (1998)
  12. N. Wakiya, T. Yamada, K. Shinozaki, and N. Mizutani,'Heteroepitaxial Growth of $CeO_2$ Thin Film on Si(00I) with an Ultra Thin YSZ Buffer Layer,' Thin Solid Films, 371 211-17 (2000) https://doi.org/10.1016/S0040-6090(00)01008-7
  13. S. Horita, H. Nakajima, and T. Kuniya, 'Improvement of the Electrical Properties of Heteroepitaxial Yttria-Stabilized Zirconia (YSZ) Films on Si Prepared by Reactive Sputtering,' Vacuum, S9 390-96 (2000)
  14. M. Hartmanova, K. Gmukova, M. Jergel, I. Thurzo, F. Kundracik, and M. BruneI, 'Structural and Electrical Properties of Double-Layer Cerial/Yttria Stabilized Zirconia Deposited on Silicon Substrate,' Solid State Ionics, 119 85-90 (1999) https://doi.org/10.1016/S0167-2738(98)00487-1
  15. J. Van Herle, R. Ihringer, N. M. Sammes, G. Tompsett, K. Kendall, K. Yamada, C. Wen, T. Kawada, M. Ihara, and J. Mizusaki, 'Concept and Technology of SOFC for Electric Vehicles,' Solid State Ionics, 132 333-42 (2000) https://doi.org/10.1016/S0167-2738(00)00649-4
  16. T. W. Kueper, S. J. Visco, and L. C. D. Jonghe, 'Thin-Film Ceramic Electrolytes Deposited on Porous and Non-Porous Substrates by Sol-Gel Techniques,' Solid State Ionics, 52 251-59 (1992) https://doi.org/10.1016/0167-2738(92)90113-4
  17. K. Masuda and P. Fukuda, 'Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structure of Anodic Alumina,' Science, 268 1466-68 (1995) https://doi.org/10.1126/science.268.5216.1466
  18. H. Masuda, F. Hasegawa, and S. Ono, 'Self-Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid,' J. Electrochem. Soc., 144 Ll27 (1997) https://doi.org/10.1149/1.1837421
  19. H. Bolt, F. Koch, J. L. Rodet, D. Karpov, and S. Menzel, $'Al_2O_3$ Coatings Deposited by Filtered Vacuum Arc-Characterization of High Temperature Properties,' Suif. Coat. Tech., 116-119 956-62 (1999) https://doi.org/10.1016/S0257-8972(99)00180-2
  20. JCPDS-ICDD file, Nos. 30-1468
  21. M. F. Ashby, 'Materials Selection in Mechanical Design,' p. 389, Butterworth-Heinmann, Oxford, 1996
  22. A. Atkinson and A. Seluk, 'Mechanical Behaviour of Ceramic Oxygen Ion-Conducting Membranes,' Solid State Ionics, 134 59-66 (2000) https://doi.org/10.1016/S0167-2738(00)00714-1
  23. H. Nafe, 'Fast Ion Transport in Solids,' Kluwer Academic Publishers, Netherlands, 327-336, 1993
  24. I. Kosacki, T. Suzuki, V. Peterovsky, and H. U. Anderson, 'Electrical Conductivity of Nanocrystalline Ceria and Zirconia Thin Films,' Solid State Ionics, 136 1225-33 (2000) https://doi.org/10.1016/S0167-2738(00)00591-9
  25. H. L. Tuller, 'Ionic Conduction in Nanocrystalline Materials,' Solid State Ionics, 131 143-57 (2000) https://doi.org/10.1016/S0167-2738(00)00629-9
  26. N. Sata, K. Eberman, K. Eberl, and J. Maler, 'Mesoscopic Fast Ion Conduction in Nanometer-Scale Planar HeteroStructures,' Nature, 408 946-49 (2000) https://doi.org/10.1038/35050047