DOI QR코드

DOI QR Code

Nitrided Pressureless Sintering 공정을 이용한 질화규소 세라믹스의 제조 및 특성

Preparation and Properties of Silicon Nitride Ceramics by Nitrided Pressureless Sintering (NPS) Process

  • 천승호 (한국에너지기술연구원 에너지재료연구센터) ;
  • 한인섭 (한국에너지기술연구원 에너지재료연구센터) ;
  • 정용희 (한국에너지기술연구원 에너지재료연구센터) ;
  • 서두원 (한국에너지기술연구원 에너지재료연구센터) ;
  • 이시우 (한국에너지기술연구원 에너지재료연구센터) ;
  • 홍기석 (한국에너지기술연구원 에너지재료연구센터) ;
  • 우상국 (한국에너지기술연구원 에너지재료연구센터)
  • Cheon, Sung-Ho (Energy Materials Research Center, Korea Institute of Energy Research) ;
  • Han, In-Sub (Energy Materials Research Center, Korea Institute of Energy Research) ;
  • Chung, Yong-Hee (Energy Materials Research Center, Korea Institute of Energy Research) ;
  • Seo, Doo-Won (Energy Materials Research Center, Korea Institute of Energy Research) ;
  • Lee, Shi-Woo (Energy Materials Research Center, Korea Institute of Energy Research) ;
  • Hong, Kee-Soeg (Energy Materials Research Center, Korea Institute of Energy Research) ;
  • Woo, Sang-Kuk (Energy Materials Research Center, Korea Institute of Energy Research)
  • 발행 : 2004.12.01

초록

Nitrided Pressureless Sintering(NPS) 공정에 의한 질화규소 세라믹스의 기계적 특성, 미세구조 및 열적 특성을 세 가지조성을 갖는 $Al_{2}O_3,\;Y_{2}O_3$ 소결조제의 변화에 따라 조사하였다. 또한 각 조성에서 금속 실리콘의 첨가량을 0, 5, 10, 15, 그리고 $20wt\%$로 변화를 주어 실리콘의 첨가효과를 조사하였다. $5wt\%\;Al_{2}O_3,\;5wt\%\;Y_{2}O_3$, 그리고 $5wt\%$ Si 조성에서 질화규소 소결체의 치밀화가 진행되었으며, 4점 꺽임강도와 상대밀도는 각각 500 MPa과 $98\%$를 나타내었다. 또한 상온에서 열팽창계수와 열전도도는 각각 $2.89{\times}10^{-6}/^{\circ}C$$28W/m^{\circ}C$를 나타내었으며, 20,000회의 열충격 싸이클을 반복한 후, 꺽임강도를 측정한 결과, 초기 500MPa의 강도를 유지하고 있었다.

The mechanical properties and microstructure and thermal properties of Nitrided Pressureless Sintering(NPS) silicon nitride ceramics, containing three type of $Al_{2}O_3,\;Y_{2}O_3$ sintering additives, were investigated. Also, we have investigated the effect of silicon metal content changing with 0, 5, 10, 15, and $20wt\%$ Si in each composition. In $5wt\%\;Al_{2}O_3,\;5wt\%\;Y_{2}O_3,\;and\;5wt\%$ Si composition, silicon nitride sintered body was successfully densified to a high density. The average 4-point flexural strength and relative density of these specimens were 500 MPa and 98% respectively. Also, Thermal expansion coefficient and thermal conductivity of specimens at room temperature were $2.89{\times}10^{-6}/^{\circ}C\;and\;28W/m^{\circ}C$, respectively. The flexural strength of sintered specimens after thermal shock test of 20,000 cycles was maintained as-received value of 500 MPa.

키워드

참고문헌

  1. A. J. Moulson, 'Review: Reaction-Bonded Silicon Nitride: Its Formation and Properties,' J. Mater. Sci., 14 1017-51 (1979) https://doi.org/10.1007/BF00561287
  2. S. Y. Lee, 'Fabrication of Si3N4/SiC Composite by Reaction-Bonding and Gas-Pressure Sintering,' J. Am. Ceram. Soc., 81 [5] 1262-68 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02477.x
  3. W. Y. Park, D. S. Park, H. D. Kim, and B. D. Han, 'SinteTing Mechanical Properties of Silicon Nitride Prepared with a Low-Cost Silicon Nitride Powder,' J. Kor. Ceram. Soc., 38 [11] 987-92 (2001)
  4. J. Mukerji and B. Prakash, 'Wear of Nitrogen Ceramics and Composites in Contact with Bearing Steel Under Oscillating Sliding Condition,' Ceram. International, 24 19-24 (1998) https://doi.org/10.1016/S0272-8842(96)00070-3
  5. F. L. Riley, 'Silicon Nitride and Related Materials,' J. Am. Ceram. Soc., 83 [2] 245-65 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01182.x
  6. H. T. Lin and M. K. Ferber, 'Mechanical Reliability Evalution of Silicon Nitride Ceramic Components After Exposure in Industrial Gas Turbines,' J. Euro. Ceram. Soc., 22 2789-97 (2002) https://doi.org/10.1016/S0955-2219(02)00146-2
  7. H. Kita, H. Hyuga, T. Hirai, T. Iizuka, and K. Ohsumi, 'Strength and Microstructure of Silicon Nitride Fabricated by Post-Sintering Process Using Low-Purity Silicon Powder as Raw Materials,' J. Ceram. Soc. lpn., 112 [4] 214-18 (2004) https://doi.org/10.2109/jcersj.112.214
  8. A. Phyzik and D. B. Beanman, 'Microstructure and Properties of Self-Reinforced Silicon Nitride,' J. Am. Ceram. Soc., 76 [11] 2737-44 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb04010.x
  9. J. S. Lee, J. H. Mun, B. D. Han, D. S. Park, and H. D. Kim, 'Densification Behavior of Reaction-Bonded Silicon Nitride Prepared by Using Coarse Si Powders,' J. Kor. Ceram. Soc., 39 [1] 45-50 (2002) https://doi.org/10.4191/KCERS.2002.39.1.045
  10. M. K. Cinibulk, G. Tomas, and S. M. Johnson, 'Strength and Creep Behavior of Rare-Earth Disilicate-Silicon Nitride Ceramics,' J. Am. Ceram. Soc., 75 [8] 2050-55 (1992) https://doi.org/10.1111/j.1151-2916.1992.tb04464.x
  11. D. P H. Hasselman, 'Unified Theory of Thermal Shock Fracture Initiation, Crack Propagation in Brittle Ceramics,' J. Am. Ceram. Soc., 52 600-04 (1969) https://doi.org/10.1111/j.1151-2916.1969.tb15848.x
  12. W. D. Kingery, J. F. R. L. Coble, and T. Vasilos, 'Thermal Conductivity : X, Data for Several Pure Oxide Materials Corrected to Zero Porosity,' J.Am. Ceram. Soc., 37107-10 (1954)