DOI QR코드

DOI QR Code

Effects of Systematic Variation Application of Fe, Mn, Cu, and Zn on These Relative Contents, Uptake Amounts, and Mutual Ratios in Orchardgrass and White Clover

Fe, Mn, Cu, Zn의 Systematic Variation 시비가 Orchardgrass 및 White Clover중 이들의 상대 함량, 탈취량 및 상호비율에 미치는 영향

  • 정연규 (순천대학교 농업생명과학대학)
  • Published : 2004.12.01

Abstract

This pot experiment was conducted to investigate the effects of systematic variation appling of Fe, Mn, Cu, and Zn on forage performance of orchardgrass and white clover, The treatments of systematic variation were 0/100. 25/75, 50/50. 75/25, and $100/0\%$ in the Fe/Cu, Mn/Zn, and Fe+Cu/Mn+Zn trials, respectively. The treatments of Fe/Mn/Cu/Zn trial were $70\%$ in main-element and $10\%$ in other 3sub-elements. 1 . General differences had been showed in the relative contents, uptake amounts, and mutual ratios of Fe, Mn, Cu, and Zn between orchardgrass and white clover. The effects of Fe application on the all traits were generally insignificant. The Mn and Cu applications, however, showed consistent differences in the all traits. At the high relative content of Mn in the forages influenced by the Mn application, the relative contents of Fe, Cu and Zn were greatly decreased without the significant differences in common content. 2. The increase of uptake amount of each micronutrient was not positively correspond to the yield increase. In some cases, the uptake amount of micronutrient was greatly increased without the significant increase of yield. At the Mn application, the Mn uptake amount was relatively much more increased than increase of the yield. The uptake amount of each element was significantly increased by the application with Mn and Cu. However, it was not in the case of Fe and Zn. 3. The mutual ratios of micronutrients were more influenced by the applications of Mn and Cu, especially Mn, than those by the applications of Fe and Zn. In the Fe/cu trial, the ratios of Fe/Cu showed 6.0~ 10.5 in orchardgrass and 10.2~ $16.4\%$ level of difference in white clover. In the Fe+Cu/Mn+Zn trial, the ratios of Mn/Cu, Mn/Zn, and Fe/Mn were greatly influenced by the treatments. It has been also found that the poor growth of white clover was caused by the unbalanced ratios of Fe/Mn, and it tended to be enhanced by the good applications and mutual ratios of other elements.

미량요소 Fe, Mn, Cu 및 Zn의 systematic variation 시비가 orchardgrass 및 white clover의 생육, 개화, 수량, 양분 함량 등에 미치는 영향 등을 구명하였다. 다량요소 양분을 동일량 시비한 조건에서 Fe/Cu(시험군-1), Mn/Zn(시험군-2) 및 Fe+Cu/Mn+Zn(시험군-3) 시험에서는 각 시험군 처리별 총 시비량을 systematic variation 방법으로 0/100, 25/75, 50/50, 75/25 및 $100/0\%$ 비율로 시비처리 하였고, Fe/Mn/Cu/Zn(시험군-4) 시험에서는 각 주성분을 $70\%$, 기타 성분의 처리를 각각 $10\%$(합계 $100\%$) 비율로 시비처리 하였다. 1. 처러별 미량요소의 상대 함량, 탈취량 및 상호비율은 두 초종간 차이를 보였다. Fe 처리별 Fe-함량, 상대 함량 및 탈취량의 차이는 상대적으로 경미하였고, 반면에 Mn과 Cu의 경우는 이들의 처리에 따라서 다소 일관성 있는 차이를 보였다. 일반적으로 Mn 시비에 따른 높은 U-상대 함량에서는 Fe, Cu 및 Zn은 함량의 면화가 없이 상대 함량이 낮아졌다. 2. 미량요소 탈취량의 증가는 수량 증가와는 다소 다른 특성을 보였고, 처리별 수량 차이가 없이 탈취향의 증가만 보이기도 하였다. Mn 시비에 따른 Mn-탈취량의 증가는 수량의 증가율보다 상대적으로 더 높았다. 각 미량요소 탈취량의 증가는 Mn과 Cu 처리에서는 뚜렷하였으나, Fe과 Zn의 처리에서는 경미한 차이를 보였다. 3. Fe과 Zn보다 Mn과 Cu(특히 Mn)의 처리에 따라서 여러 상호 비율들이 큰 차이를 보였다. Fe/Cu시험에서 처리별 Fe/Cu 비율은 orchardgrass는 6.0~10.5, white clover는 $10.2\~16.4$ 수준의 차이를 보였다. Fe+Cu/Mn+Zn 시험에서 처리별 Mn/Cu, Mn/Zn 및 Fe/Mn 상호 비율이 상대적으로 뚜렷한 차이를 보였다. 일반적으로 Fe/Mn 비율의 불균형이 white clover의 불량한 생육특성과 연관성이 있고, 이 조건에서도 다른 양이온 미량요소의 시비 비율 또는 상호 비율에 따라서 다소 양호해졌음을 보여주었다.

Keywords

References

  1. 정연규. 2004. Fe, Mn, Cu 및 Zn의 Systematic Variation 施肥가 Orchardgrass 및 White clover의 생육, 뿌리/근류 및 개화에 미치는 영향. 한초지 24(2): 105-114 https://doi.org/10.5333/KGFS.2004.24.2.105
  2. Bergmann, W. and P. Neubert. 1976. Pflanzendiagnose und Pflanzenanalyse. VEB Gustav Fischer Verlag, Jena
  3. Bolle-Jones, E.W. 1957. Copper, its effects on the growth and composition of the rubber plant. Plant and Soil, 4:160-178
  4. Bond, G. and E.J. Hewitt. 1967. The significance of copper for N-fixation in nodulated Alnus and Casuarina plants. Plant and Soil, 27:447-449 https://doi.org/10.1007/BF01376337
  5. Brown, J.C., R.S. Holmes and L.O. Tiffin. 1959. Hypotheses concerning iron chlorosis. Soil Sci. Soc. Am. Proc. 23:231-234 https://doi.org/10.2136/sssaj1959.03615995002300030023x
  6. Bussler, W. 1958. Manganmangelsymptome bei hoeheren Pflanzen. Z. f. Pflanzenernaehr., Dueng., Bodenkd. 81:225-242 https://doi.org/10.1002/jpln.19580810305
  7. Cumbus I.P., D.J. Homsey and L.W. Robinson. 1977. The influence of P, Zn and Mn on absorption and translocation of Fe in watercress. Plant and Soil. 48:651-660 https://doi.org/10.1007/BF00145775
  8. Finck, A. 1969. Pflanzenernaehrung in Stickworten, I. Aufl. Verlag Ferdinand Hirt, Kiel
  9. Gupta U.C. and E.W. Chipman. 1976. Influence of iron and pH on the yield and iron, manganese, zinc, and nitrogen concentration of carrots grown on sphagnum peat soil. Plant and Soil. 44: 559-566 https://doi.org/10.1007/BF00011375
  10. Hewitt, E.J., E.W. Bolle-Jones and P. Miles. 1954. The production of copper, zinc and molybdenum deficiencies in crop plants grown in sand culture with special reference to some effects of water supply and seed reserve. Plant and Soil, 5:205-222 https://doi.org/10.1007/BF01395896
  11. Hiatt, A.J. and J.L. Ragland. 1963. Manganese toxicity of burley tobacco. Agron. J. 55:47-49 https://doi.org/10.2134/agronj1963.00021962005500010017x
  12. Kirsch, R.K., M.E. Harward and R.G. Petersen. 1960. Interrelationship among iron, manganese, and molybdenum in the growth and nutrition of tomatoes grown in culture solution. Plant and Soil. 12:259-275 https://doi.org/10.1007/BF01343653
  13. Moraghan, J.T. and T.J. Freeman. 1978. Influence of FeEDDHA on growth and manganese accumulation in flax. Soil Sci Soc. Am. Proc. 42:455-460 https://doi.org/10.2136/sssaj1978.03615995004200030016x
  14. Nieschlag, F. 1966. Versuche ueber den Einfluss einiger Spurenelemente auf die Leistung von Milchviehweiden. Landw. Forschung. 19:191-195
  15. Osullivan, M. 1969. Iron metabolism of grasses. I. Effect of iron supply on some inorganic and organic constituents. Plant and Soil. 31:451-462 https://doi.org/10.1007/BF01373816
  16. Rahimi, A. 1972. Kupfermangelsymptome und ihre Entwicklung bei hoeheren Pflanzen. Dissertation, D83, Nr. 14, TU Berlin
  17. Rahimi, A. and W. Bussler. 1973. Der Einfluss unterschiedlicher Zink Gaben auf die Entwicklung von Mais. Z. f. Pflanzenernaehr., Dueng., Bodenkd. 135:267-283 https://doi.org/10.1002/jpln.19731350311
  18. Riekels, J.W. and J.C. Lingle. 1966. Iron uptake and translocation by tomato plants as influenced by root temperature and manganese nutrition. Plant Physiol. 41:1095-1101 https://doi.org/10.1104/pp.41.7.1095
  19. Somers, I.I. and J.W. Shive. 1942. The ironmanganese relation in the plant metabolism. Plant Physiol. 17:582-602 https://doi.org/10.1104/pp.17.4.582
  20. Woodhouse, W.W. Jr. 1964. Nutrient deficiencies in forage grasses, In; Hunger signs in crops, 3rd edit. David Mackay Comp., New York. 181-218