DOI QR코드

DOI QR Code

Effects of Systematic Variation Application of Fe, Mn, Cu and Zn on these Contents in Orchardgrass and White Clover

Fe, Mn, Cu 및 Zn의 Systematic Variation 시비가 Orchardgrass 및 White Clover중 이들의 함량에 미치는 영향

  • 정연규 (순천대학교 농업생명과학대학)
  • Published : 2004.12.01

Abstract

This pot experiment was conducted to investigate the effects of systematic variation appling of Fe, Mn, Cu, and Zn on forage performance of orchardgrass and white clover. The treatments of systematic variation were 0/100, 25/75, 50/50, 75/25, and $100/0\%$ in the Fe/Cu(trial-1), Mn/Zn(trial-2), and Fe+Cu/Mn+Zn(trial-3), respectively. The treatments of Fe/Mn/Cu/Zn(trial-4) were $70\%$ in main-element and $10\% in other 3 sub-elements, respectively. 1. Compared with orchadgrass, white clover showed relatively consistent differences in the content of micronutrients as influenced by treatments of the systematic variation. The contents of Mn and Cu in the forages were significantly influenced by the application rates of Mn and Cu, respectively. The contents of Fe and Zn in the forages, however, were not significantly different among these treatments. 2. Compared with orchardgrass in the Fe/cu trial, white clover had not only the low content of Cu but also the Cu content and yield of white clover were greatly decreased by the low rate of application of Cu. In the Mn/Zn trial, the $0/100\%$ resulted in the severe decrease of Mn-content in both forages. The low content of Mn in white clover tended to be negatively correlated to the Mn-chlorosis, inferior growth and flowering, and low yield. 3. In the Fe+Cu/Mn+Zn trial, the application with $0/100\%$ and $0/100\%$ resulted in the relatively great decrease of Cu and Mn contents, respectively. These traits in white clover tended to be negatively correlated to the inferior growth and flowering, and low yield 4. In the Fe/Mn/Cu/Zn trial, the content of every main-elements in the forages were increased especially in Mn. In addition, the contents of sub-elements were likely to be somewhat negatively influenced by the treatment of main-element respectively.

Orchardgrass 및 white clover에서 미량요소 Fe, Mn, Cu 및 Zn의 systematic variation 시비가 목초의 생육, 개화, 수량, 양분 함량 등에 미치는 영향 등을 구명하였다. 다량요소 양분을 동일량 시비한 조건에서 Fe/Cu(시험군-1), Mn/ Zn(시험군-2) 및 Fe+Cu/Mn+Zn(시험군-3) 시험에서는 systematic variation 방법으로 각 시험군 처리별 총 시비량을 0/100, 25/75, 50/50, 75/25, $100/0\% 비율로 나누어 시비처리 하였고, Fe/ Mn/Cu/Zn(시험군-4) 시험에서는 각 주성분의 처리 $70\%$, 기타 성분의 처리는 각각 $10\%$ (합계 $100\%$) 비율로 시비처리 하였다. 1. 처리별 목초 중 미량요소 함량은 일반적으로 white clover가 orchardgrass 보다 더 영향을 받았다 목초 중 Mn과 Cu-함량은 각 처리에 따라 뚜렷한 차이를 보였지만 Fe과 Zn-함량은 경미한 차이를 보였다. 2. Fe/cu 시험에서 white clover는 orchard-grass에 비해서 Cu-함량이 낮을 뿐만 아니라, 낮은 Cu 비율의 처리에서 Cu-함량과 수량이 심한 감소를 보였다. Mn/Zn 시험에서 $0/100\%$ 처리는 두 초종 공히 Mn-함량이 크게 감소되있고, 예취 회수가 갈수록 더 심해졌다. 특히 white clover는 본 1과 2보에서 언급한 Mn-결집 증상과 더불어 생육, 개화 및 수량이 불량한 것과 연관되었다. 3. Fe+Cu/Mn+Zn 시험에서는 처리별 Mn과 Cu-함량만 상대적으로 크게 차이를 보였다. 0/100과 100/0 처리에서 Cu와 Mn-함량이 각각 크게 낮아졌고, 이와 연관하여 특히 white clover는 생육, 개화 및 수량이 불량하였다. 낮은 Cu 및 Mn 시비의 부정적인 영향은 white clover가 orchardgrass보다 더 크게 나타났다. 4. Fe/Mn/Cu/Zn 시험에서는 처리된 각 주성분의 함량이 증가하였으며 특히 Mn-함량이 크게 증가하였다. 또한 각 주성분 처리($70\%$)에 따른 이들 함량의 증가는 다른 부성분($10\%$ 처리)들의 함량에 다소 부정적인 영향을 준 것으로 보였다.

Keywords

References

  1. 정연규. 2004a. Fe, Mn, Cu 및 Zn의 Systematic Variation 施肥가 Orchardgrass 및 White clover의 생육, 뿌리/근류 및 개화에 미치는 영향. 한초지 24(2):105-114 https://doi.org/10.5333/KGFS.2004.24.2.105
  2. 정연규. 2004b. Fe, Mn, Cu 및 Zn의 Systematic Variation 施肥가 Orchardgrass 및 White clover의 질소화합물(조/순단백질) 함량에 미치는 영향. 한초지 24(3):183-192 https://doi.org/10.5333/KGFS.2004.24.3.183
  3. 정연규. 2004c. Fe, Mn, Cu 및 Zn의 Systematic Variation 施肥가 Orchardgrass 및 White clover의 건물수량에 미치는 영향. 한초지 24(3):193-200 https://doi.org/10.5333/KGFS.2004.24.3.193
  4. Amberger, A. 1979. Pflanzenernaehrung. Verlag Eugen Ulmer, Stuttgart
  5. Balks, R. 1955. Mangan in der Tierernaehrung. Die Phosphorsaeure, 15:162-171
  6. Bergmann, W. and P. Neubert. 1976. Pflanzendiagnose und Pflanzenanalyse. VEB Gustav Fischer Verlag, Jena
  7. Bolle-Jones, E.W. 1957. Copper, its effects on the growth and composition of the rubber plant. Plant and Soil, 4:160-178
  8. Bond, G. and E.J. Hewitt. 1967. The significance of copper for N-fixation in nodulated Alnus and Casuarina plants. Plant and Soil, 27:447-449 https://doi.org/10.1007/BF01376337
  9. Brown, J.C., R.S. Holmes and L.O. Tiffin. 1959. Hypotheses concerning iron chlorosis. Soil Sci. Soc. Am. Proc. 23:231-234 https://doi.org/10.2136/sssaj1959.03615995002300030023x
  10. Bussler, W. 1958. Manganmangelsymptome bei hoeheren Pflanzen. Z. f. Pflanzenemaehr. Dueng. Bodenkd. 81:225-242 https://doi.org/10.1002/jpln.19580810305
  11. Cumbus I.P., D.J. Hornsey and L.W. Robinson. 1977. The influence of P, Zn and Mn on absorption and translocation of Fe in watercress. Plant and Soil. 48:651-660 https://doi.org/10.1007/BF00145775
  12. Finck, A. 1969. Pflanzenernaehrung in Stickworten, 1. Aufl. Verlag Ferdinand Hirt, Kiel
  13. Finger, H. 1951. Die Wirkung von Bor, Mangan, Kupfer und steigenden Kalkgaben auf rohhumushaltigem Heidesandboden. Landw. Forschung, 3:89-112
  14. Gladstones, J.S., J.F. Loneragan and W.J. Simmons. 1975. Mineral elements in temperate crop and pasture plants. III. Copper. Aust. J. Agric. Res., 26:113-126 https://doi.org/10.1071/AR9750113
  15. Gupta U.C. and E.W. Chipman. 1976. Influence of iron and pH on the yield and iron, manganese, zinc, and nitrogen concentration of carrots grown on sphagnum peat soil. Plant and Soil. 44:559-566 https://doi.org/10.1007/BF00011375
  16. Hewitt, E.J., E.W. Bolle-Jones and P. Miles. 1954. The production of copper, zinc and molybdenum deficiencies in crop plants grown in sand culture with special reference to some effects of water supply and seed reserve. Plant and Soil, 5:205-222 https://doi.org/10.1007/BF01395896
  17. Hiatt, A.J. and J.L. Ragland. 1963. Manganese toxicity of burley tobacco. Agron. J. 55:47-49 https://doi.org/10.2134/agronj1963.00021962005500010017x
  18. Kirsch, R.K., M.E. Harward and R.G. Petersen. 1960. Interrelationship among iron, manganese, and molybdenum in the growth and nutrition of tomatoes grown in culture solution. Plant and Soil. 12:259-275 https://doi.org/10.1007/BF01343653
  19. Moraghan, J.T. and T.J. Freeman. 1978. Influence of FeEDDHA on growth and manganese accumulation in flax. Soil Sci Soc. Am. Proc. 42:455-460 https://doi.org/10.2136/sssaj1978.03615995004200030016x
  20. Nieschlag, F. 1966. Versuche ueber den Einfluss einiger Spurenelemente auf die Leistung von Milchviehweiden. Landw. Forschung. 19:191-195
  21. Osullivan, M. 1969. Iron metabolism of grasses. I. Effect of iron supply on some inorganic and organic constituents. Plant and Soil. 31:451-462 https://doi.org/10.1007/BF01373816
  22. Rahimi, A. 1972. Kupfermangelsymptome und ihre Entwicklung bei hoeheren Pflanzen. Dissertation, D83, Nr. 14, TU Berlin
  23. Rahimi, A. and W. Bussler. 1973. Der Einfluss unterschiedlicher Zink-Gaben auf die Entwicklung von Mais. Z. f. Pflanzenernaehr., Dueng., Bodenkd. 135:267-283 https://doi.org/10.1002/jpln.19731350311
  24. Riekels, J.W. and J.C. Lingle. 1966. Iron uptake and translocation by tomato plants as influenced by root temperature and manganese nutrition. Plant Physiol. 41:1095-1101 https://doi.org/10.1104/pp.41.7.1095
  25. Schmitt, L. 1971. Die Hauptelemente und die Spurenelemente. Landw. Forschung, SH 26/2: 209-220.
  26. Somers, I.I. and J.W. Shive. 1942. The iron manganese relation in the plant metabolism. Plant Physiol. 17:582-602 https://doi.org/10.1104/pp.17.4.582
  27. Thiel, H. and A. Finck. 1973. Ermittlung von Grenzwerten optimaler Kupfer-Versorgung fuer Hafer und Sommergerste. Z. f. Pflanzenernaehr., Dueng., Bodenkd. 134:107-124 https://doi.org/10.1002/jpln.19731340204
  28. Vose, P.B. and D.G. Jones. 1963. The interaction of manganese and calcium on nodulation and growth in varieties of Trifoliurn repens. Plant and Soil, 18:372-385 https://doi.org/10.1007/BF01347236
  29. Woodhouse, W.W. Jr. 1964. Nutrient deficiencies in forage grasses, In; Hunger signs in crops, 3rd edit. David Mackay Comp., New Yorlc. 181-218