Effect of $Cr^{6+}$ Stress on Photosynthetic Pigments and Certain Physiological Processes in the Cyanobacterium Anacystis nidulans and Its Chromium Resistant Strain

  • KHATTAR, J. I. S., (Department of Botany, Punjabi University) ;
  • SARMA, T. A. (Department of Botany, Punjabi University) ;
  • ANURADHA SHARMA, (Department of Botany, Punjabi University)
  • Published : 2004.12.01

Abstract

A MNNG (N-methyl-N'-nitro-N-nitrosoguanidine) induced chromium resistant strain ($Cr^{r}18$) of unicellular cyanobacterium Anacystis nidulans has been isolated and characterized. The resistant strain could grow (although restricted to $50\%$ of control) in chromium concentration (180${\mu}M$) lethal to the wild-type. Sublethal ($160{\mu}M$) concentration of $Cr^{6+}$ significantly reduced (13-$37.5$) all the photosynthetic pigments of A. nidulans with maximum reduction in phycoerythrin followed by ChI $\alpha$. Pigments of A. nidulans were drastically decreased in lethal concentration of Cr^{6+} with maximum reduction in phycoerythrin ($75\%$) and allophycocyanin ($67.5\%$). Resistant strain $Cr^{r}18$ resisted toxic effects of sublethal and lethal concentrations of $Cr^{6+}$ on photosynthetic pigments as revealed by less decrease in pigments as compared to A. nidulans. Effect of $Cr^{6+}$ stress was also studied on nitrogen assimilation and phosphate uptake. Sublethal concentration of $Cr^{6+}$ drastically reduced ($71.5\%$) nitrate uptake by A. nidulans while a decrease of $29\%$ was observed in strain $Cr^{r}18$. Short (2 day) exposure of A. nidulans and its resistant strain $Cr^{r}18\;to\;Cr^{6+}$ did not affect nitrate reductase and glutamine synthetase (transferase), whereas longer (10 day) exposure to $Cr^{6+}$ lowered activities of both enzymes in A. nidulans but not significantly in the strain $Cr^{r}18$. Ammonium uptake by both strains was not affected by $Cr^{6+}$. Thus, $Cr^{6+}$ affected photosynthetic pigments, nitrogen assimilation, and phosphate uptake of A. nidulans, while strain $Cr^{r}18$ was able to resist toxic effects of the metal. Advantages of using strain $Cr^{r}18$ for bioremediation purposes have been evaluated by studying $Cr^{6+}$ removal from the solution. Resistant strain $Cr^{r}18$ was able to remove $33\%$ more $Cr^{6+}$ than A. nidulans and thus it can prove to be a good candidate for bioremediation of $Cr^{6+}$ from polluted waters.

Keywords

References

  1. Bennet, A. and L. Bogorad. 1973. Complementary chromatic adaptations in a filamentous blue green alga. J. Cell. Biol. 58: 417-435
  2. Bolanos, L., M. Garcia-Gonzalez, P. Mateo, and I. Bonilla. 1992. Differential toxicological response to cadmium in Anabaena strain PCC 7119 grown with NO$_3$ or NH$_4$ $^n$ as nitrogen sources. J. Plant Physiol. 140: 345-349
  3. Corder, S. L. and M. Reeves. 1994. Biosorption of nickel in complex aqueous waste streams by cyanobacteria. Appl. Biochem. Biotechnol. 45: 847-859
  4. Clizsters, H. and F. Van Assche. 1985. Inhibition of photosynthesis by heavy metals. Phytosynth. Res. 7: 31-40
  5. Gupta, S. L. and A. K. Kashyap. 1984. Impact of copper on phosphate uptake in Anacystis nidulans and cyanophage AS-resistant mutant. Adv. Biol. Res. 1: 37-40
  6. Gekeler, N., E. Grill, E. L. Winnackear, and M. H. Zenk. 1998. Algae sequester metal complexes via synthesis of phytochelatin complexes. Arch. Microbiol. 150: 197-202
  7. Herrero, A., E. Flores, and M. G. Guerrero. 1981. Regulation of nitrate reductase levels in the cyanobacteria Anacystis nidulans, Anabaena sp. strain 7119 and Nostoc sp. strain 6719. J. Bacteriol. 145: 175-180
  8. Jensen, T. E., J. W. Rachlin, V. Jani, and B. Warkentine. 1982. An X-ray energy dispersive study of cellular compartmentization of lead and zinc in Chlorella saccharophylla, Chlorophyta Navicula incerta and Nitzshcia closterium Bacillariophyta. Environ. Expt. Botany 22: 319-328
  9. Kashyap, A. K. and S. L. Gupta. 1982. Effect of lethal copper concentrations on nitate uptake, reduction and nitrite release in Anacystis nidulans. Z. Pflanzenphysiol. 107: 289- 294
  10. Khattar, J. I. S., T. A. Sarma, and D. P. Singh. 1999. Removal of chromium ions by agar immobilized cells of the cyanobacterium Anacystis nidulans in a continuous flow bioreactor. Enz. Microbial Technol. 25: 564-568
  11. Khattar, J. I. S., T. A. Sarma, D. P. Singh, and A. Sharma. 2002. Bioaccumulation of chromium ions by immobilized cells of a filamentous cyanobacterium, Anabaena variabilis. J. Microbiol. Biotechnol. 12: 137-141
  12. Kumar, D., M. Jha, and H. D. Kumar. 1985. Copper toxicity in the fresh water cyanobacterium Nostoc linckia. J. Gen. Appl. Microbiol. 31: 165-169
  13. Kuyucak, N. and B. Volesky. 1990. Biosorption of algal biomass, pp. 7-44. In B. Volesky (ed.), Biosorption of Heavy Metals. CRC Press, Boca Raton, Boston
  14. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with folin-phenol reagent. J. Biol. Chem. 193: 265-275
  15. Mallick, N. and L. C. Rai. 1994. Kinetic studies of mineral uptake and enzyme activities of Anabaena doliolum under metal stress. J. Gen. Appl. Microbiol. 40: 123-133
  16. Mishra, D. K. and H. D. Kumar. 1984. Effects of vanadium and tungsten on the nitrogen fixing cyanobacterium Nostoc linckia. Biol. Plant 26: 448-454
  17. Mohanty, N. and P. Mohanty. 1985. Cation effects on primary processes of photosynthesis, pp. 1-18. In F. R. Singh and S. K. Sawhney (eds.), Advances in Frontier Areas of Plant Biochemistry. Prentice Hall of India, New Delhi
  18. Murthy, S. D. S. and P. Mohanty. 1999. Heavy metal ions induced inhibition in bioenergetic processes of photosynthesis, pp. 185-186. In G. S. Singhal and T. Ramasarma (eds.), Trends in Bioenergetic and Biotechnological Processes. Today and Tomorrow Publishers, New Delhi
  19. Murthy, S. D. S., S. C. Sabat, and P. Mohanty. 1989. Mercury induced inhibition of photosystem II activity and changes in the emission of fluorescence from phycobilisomes in intact cells of the cyanobacterium, Spirulina platensis. Plant Cell Physiol. 30: 1152-1157
  20. Myers, J. and W. A. Kratz. 1955. Relationship between pigment content and photosynthetic characteristics in a blue green alga. J. Gen. Physiol. 39: 11-21
  21. Nicholas, D. J. D. and A. Nason. 1957. Determination of nitrate and nitrite, pp. 981-984. In. S. P. Colowick and N. O. Kaplan (eds.), Methods in Enzymology Vol. III. Academic Press, New York, U.S.A
  22. Nies, D. H. 2003. Efflux mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27: 313-339 https://doi.org/10.1016/S0168-6445(03)00048-2
  23. Nriagu, J. O. and J. M. Pacyna. 1988. Quantitative assessment of world wide contamination of air, water and soils with trace metals. Nature 333: 134-139
  24. Pandey, P. K., C. B. Singh, and S. P. Singh. 1992. Cu uptake in a cyanobacterium: Fate of selected photochemical reactions. Curr. Microbiol. 24: 35-39
  25. Rai, L. C., J. P. Gaur, and H. D. Kumar. 1981. Phycology of heavy metal pollution. Biol. Rev. 56: 99-151 https://doi.org/10.1111/j.1469-185X.1981.tb00345.x
  26. Rai, L. C., J. P. Gaur, and H. D. Kumar. 1981. Protective effects of certain environmental factors on the toxicity of zinc, mercury and methyl mercury to Chlorella vulgaris. Environ. Res. 25: 250-259 https://doi.org/10.1016/0013-9351(81)90026-8
  27. Rai, L. C., N. Mallick, J. B. Singh, and H. D. Kumar. 1991. Physiological and biochemical characteristics of a copper tolerant and wild type strain of Anabaena doliolum under copper stress. J. Plant Physiol. 38: 68-74
  28. Rai, L. C., M. Raizada, N. Mallick, Y. Husaini, A. K. Singh, and S. K. Dubey. 1990. Effect of four heavy metals on the biology of Nostoc muscorum. Biol. Metals 2: 229-234
  29. Rai, L. C., Y. Husaini, and N. Mallick. 1996. Physiological and biochemical responses of Nostoc linckia to combined effects of aluminium, fluoride and acidification. Environ. Exptl. Bot. 36: 1-12
  30. Reed, R. H. and G. M. Gadd. 1990. Metal tolerance in eukaryotic and prokaryotic algae, pp. 105-118. In A. J. Shaw (ed.), Heavy Metal Tolerance in Plants: Evolutionary Aspects. CRC Press Boca Raton F.L., U.S.A
  31. Rosen, B. P. 1996. Bacterial resistance to heavy metals and metalloids. J. Biol. Inorg. Chem. 1: 273-277 https://doi.org/10.1007/s007750050053
  32. Safferman, R. S. and M. E. Morris. 1964. Growth characteristics of the blue green algal virus LPP-1. J. Bacteriol. 88: 771-775
  33. Sandau, E., P. Sandau, and O. Pulz. 1996. Heavy metal sorption by microalgae. Acta Biotechnol. 16: 227-235 https://doi.org/10.1002/abio.370160402
  34. Sarma, T. A. and J. I. S. Khattar. 1992. Phosphorus deficiency, nitrogen assimilation and akinete differentiation in the cyanobacterium Anabaena torulosa. Folia Microbiol. 37: 223-226
  35. Shapiro, B. M. and E. R. Stadtman. 1970. Glutamine synthetase of Escherichia coli, pp. 914-922. In H. Tabor and C. W. Tabor (eds.), Methods in Enzymology Vol. XVII. Academic Press, New York, U.S.A
  36. Silver, S. 1992. Plasmid determined metal resistance mechanisms: Range and overview. Plasmid 27: 1-3
  37. Silver, S. and L. T. Phung. 1996. Bacterial heavy metal resistance: New surprises. Annu. Rev. Microbiol. 50: 753-789
  38. Singh, S. P. 1993. Heavy metal biology. Ind. Phycol. Rev. 2: 59-72
  39. Singh, S. P. and V. Yadava. 1984. Cadmium induced inhibition of ammonium and phosphate uptake in Anacystis nidulans: Interaction with other divalent cations. J. Gen. Appl. Microbiol. 30: 79-86 https://doi.org/10.2323/jgam.30.79
  40. Solarzano, L. 1969. Determination of ammonia in natural waters by the phenol hypochlorite method. Limnol. Oceanogr. 14: 799-801
  41. Sorentinom C. 1979. The effects of heavy metals on plankton: A review. Phykos 18: 149-161
  42. Tripathi, B. N., A. Singh, and J. P. Gaur. 2000. Impacts of heavy metal pollution on algal assemblages. A review. Environ. Sci. 9: 1-7
  43. Vogel, A. I. 1978. Textbook of Quantitative Inorganic Analysis, 4th ed., Longman, New York, U.S.A
  44. Wehrheim, B. and M. Wettern. 1994. Comparative studies of the heavy metal uptake of whole cells and different types of cell walls from Chlorella fusca. Biotechnol. Tech. 8: 227-232