References
- Angelidaki, I., L. Ellegaard and B. K. Ahring. 2003. Applications of the anaerobic digestion process. Adv. Biochem. Eng. Biotechnol. 82: 1-33
- Bayer, E. A. and R. Lamed. 1992. The cellulose paradox: Pollutant par excellence and/or a reclaimable natural resource? Biodegradation 3: 171-88
- Bélaïch, J. P., C. Tardif, A. Bélaïch, and C. Gaudin. 1997. The cellulolytic system of Clostridium cellulolyticum. J. Biotechnol. 57: 3-14
- Boisset, C., H. Chanzy, B. Henrissat, R. Lamed, Y. Shoham, and E. A. Bayer. 1999. Digestion of crystalline cellulose substrates by Clostridium thermocellum cellulosome: Structural and morphological aspects. Biochem. J. 340: 829-835
- Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248- 254 https://doi.org/10.1016/0003-2697(76)90527-3
- Chaney, A. L. and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8: 130-132
- Desvaux, M. 2001. La fermentation de la cellulose par Clostridium cellulolyticum: Métabolisme modèle d’un Clostridium cellulolytique mésophile. PhD thesis, Université Henri Poincaré-Nancy I, Nancy, France
- Desvaux, M., E. Guedon, and H. Petitdemange. 2001. Carbon flux distribution and kinetics of cellulose fermentation in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium. J. Bacteriol. 183: 119- 130
- Desvaux, M., E. Guedon and H. Petitdemange. 2000. Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl. Environ. Microbiol. 66: 2461-2470 https://doi.org/10.1128/AEM.66.6.2461-2470.2000
- Desvaux, M., E. Guedon, and H. Petitdemange. 2001. Kinetics and metabolism of cellulose degradation at high substrate concentrations in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium. Appl. Environ. Microbiol. 67: 837-845
- Desvaux, M., E. Guedon, and H. Petitdemange. 2001. Metabolic flux in cellulose batch and cellulose-fed continuous cultures of Clostridium cellulolyticum in response to acidic environment. Microbiology 147: 1461-1471
- Desvaux, M. and H. Petitdemange. 2001. Flux analysis of the metabolism of Clostridium cellulolyticum grown in cellulose-fed continuous culture on a chemically defined medium under ammonium-limited conditions. Appl. Environ. Microbiol. 67: 3846-3851
- Dubois, M., K. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1951. A colorimetric method for the determination of sugars. Nature 168: 167
- Giallo, J., C. Gaudin, and J. P. Bélaïch. 1985. Metabolism and solubilization of cellulose by Clostridium cellulolyticum H10. Appl. Environ. Microbiol. 49: 1216-1221
- Guedon, E., M. Desvaux, and H. Petitdemange. 2002. Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl. Environ. Microbiol. 68: 53-58
- Guedon, E., M. Desvaux, and H. Petitdemange. 2000. Kinetic analysis of Clostridium cellulolyticum carbohydrate metabolism: Importance of glucose 1-phosphate and glucose 6-phosphate branch points for distribution of carbon fluxes inside and outside cells as revealed by steady-state continuous culture. J. Bacteriol. 182: 2010-2017
- Guedon, E., S. Payot, M. Desvaux, and H. Petitdemange. 1999. Carbon and electron flow in Clostridium cellulolyticum grown in chemostat culture on synthetic medium. J. Bacteriol. 181: 3262-3269
- Guedon, E., S. Payot, M. Desvaux, and H. Petitdemange. 2000. Relationships between cellobiose catabolism, enzyme levels, and metabolic intermediates in Clostridium cellulolyticum grown in a synthetic medium. Biotechnol. Bioeng. 67: 327- 335 https://doi.org/10.1002/(SICI)1097-0290(20000205)67:3<327::AID-BIT9>3.0.CO;2-U
- Hofman-Bang, J., D. Zheng, P. Westermann, B. K. Ahring, and L. Raskin. 2003. Molecular ecology of anaerobic reactor systems. Adv. Biochem. Eng. Biotechnol. 81: 151-203
- Holms, H. 1996. Flux analysis and control of the central metabolic pathways in Escherichia coli. FEMS Microbiol. Reviews 19: 85-116
- Huang, L. and C. W. Forsberg. 1990. Cellulose digestion and cellulase regulation and distribution in Fibrobacter succinogenes subsp. succinogenes S85. Appl. Environ. Microbiol. 56: 1221-1228
- Kovarova-Kovar, K. and T. Egli. 1998. Growth kinetics of suspended microbial cells: From single-substrate-controlled growth to mixed-substrate kinetics. Microb. Mol. Biol. Rev. 62: 646-666
- Leschine, S. B. 1995. Cellulose degradation in anaerobic environments. Annu. Rev. Microbiol. 49: 399-426 https://doi.org/10.1146/annurev.mi.49.100195.002151
- Lynd, L. R., J. H. Cushman, R. J. Nichols, and C. E. Wyman. 1991. Fuel ethanol from cellulosic biomass. Science 251: 1318-1323
- Lynd, L. R., P. J. Weimer, W. H. van Zyl, and I. S. Pretorius. 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577
-
Matheron, C., A. M. Delort, G. Gaudet, E. Forano, and T. Liptaj. 1998.
$^13$ C and$^1$ H nuclear magnetic resonance study of glycogen futile cycling in strains of the genus Fibrobacter. Appl. Environ. Microbiol. 64: 74-81 - Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
- Mitchell, W. J. 1998. Physiology of carbohydrate to solvent conversion by clostridia. Adv. Microb. Physiol. 39: 31-130 https://doi.org/10.1016/S0065-2911(08)60015-6
- Mokrasch, L. C. 1967. Use of 2,4,6-trinitrobenzenesulfonic acid for the coestimation of amines, amino acids, and proteins in mixtures. Anal. Biochem. 18: 64-71 https://doi.org/10.1016/0003-2697(67)90057-7
-
Monserrate, E., S. B. Leschine, and E. Canale-Parola. 2001. Clostridium hungatei sp. nov., a mesophilic, N
$_2$ -fixing cellulolytic bacterium isolated from soil. Int. J. Syst. Microbiol. 51: 123-132 - Nandi, R. and S. Sengupta. 1998. Microbial production of hydrogen: An overview. Crit. Rev. Microbiol. 24: 61-84
- Payot, S., E. Guedon, C. Cailliez, E. Gelhaye, and H. Petitdemange. 1998. Metabolism of cellobiose by Clostridium cellulolyticum growing in continuous culture: Evidence for decreased NADH reoxidation as a factor limiting growth. Microbiology 144: 375-384
- Pereira, A. N., M. Mobedshashi, and M. R. Ladish. 1988. Preparation of cellodextrins. Meth. Enzymol. 160: 26-45
- Petitdemange, E., F. Caillet, and C. Gaudin. 1984. Clostridium cellulolyticum sp. nov., a cellulolytic mesophilic species from decayed grass. Int. J. Syst. Microbiol. 34: 155-159
- Stephanopoulos, G. 1999. Metabolic fluxes and metabolic engineering. Metab. Eng. 1: 1-11
- Strobel, H. J., F. C. Caldwell, and K. A. Dawson. 1995. Carbohydrate transport by the anaerobic thermophile Clostridium thermocellum LQRI. Appl. Environ. Microbiol. 61: 4012-4015
- Updegraff, D. M. 1969. Semimicro determination of cellulose in biological materials. Anal. Biochem. 32: 420-424 https://doi.org/10.1016/S0003-2697(69)80009-6
- Weimer, P. J., Y. Shi, and C. L. Odt. 1990. A segmented gas/ liquid delivery system for continuous culture of microorganisms on insoluble substrates and its use for growth of Ruminoccus flavefaciens on cellulose. Appl. Microbiol. Biotechnol. 36: 178-183
-
Wolin, M. J. and T. L. Miller. 1987. Bioconversion of organic carbon to CH
$_4$ and CO$_2-$ . Geomicrobiol. J. 5: 239- 259 -
Zeng, A. P. 1999. Continuous Culture, 2
$^nd$ Ed. American Society for Microbiology, Washington D.C., U.S.A