Modeling of Nano-scale FET(Field Effect Transistor : FinFET)

나노-스케일 전계 효과 트랜지스터 모델링 연구 : FinFET

  • Published : 2004.06.30

Abstract

We performed two-dimensional (20) computer-based modeling and simulation of FinFET by solving the coupled Poisson-Schrodinger equations quantum-mechanically in a self-consistent manner. The simulation results are carefully investigated for FinFET with gate length(Lg) varying from 10 to 80nm and with a Si-fin thickness($T_{fin}$) varying from 10 to 40nm. Current-voltage (I-V) characteristics are compared with the experimental data. Device optimization has been performed in order to suppress the short-channel effects (SCEs) including the sub-threshold swing, threshold voltage roll-off, drain induced barrier lowering (DIBL). The quantum-mechanical simulation is compared with the classical appmach in order to understand the influence of the electron confinement effect. Simulation results indicated that the FinFET is a promising structure to suppress the SCEs and the quantum-mechanical simulation is essential for applying nano-scale device structure.

본 논문에서는 2차원 양자 역학적 모델링 및 시뮬레이션(quantum mechanical modeling and simulation)으로써, 자기정렬 이중게이츠 구조(self-aligned double-gate structure)인 FinFET에 관하여 결합된 푸아송-슈뢰딩거 방정식(coupled Poisson and Schrodinger equations)를 셀프-컨시스턴트(self-consistent)한 방법으로 해석하는 수치적 모델을 제안한다. 시뮬레이션은 게이트 길이(Lg)를 10에서 80nm까지, 실리콘 핀 두께($T_{fin}$)를 10에서 40nm까지 변화시켜가며 시행되었다. 시뮬레이션의 검증을 위한 전류-전압 특성을 실험 결과값과 비교하였으며, 문턱 전압 이하 기울기(subthreshold swing), 문턱 전압 롤-오프(thresholdvoltage roll-off), 그리고 드레인 유기 장벽 감소(drain induced barrier lowering, DIBL)과 같은 파라미터를 추출함으로써 단채널 효과를 줄이기 위한 소자 최적화를 시행하였다. 또한, 고전적 방법과 양자 역학적 방법의 시뮬레이션 결과를 비교함으로써,양자 역학적 해석의 필요성을 확인하였다. 본 연구를 통해서, FinFET과 같은 구조가 단채널 효과를 줄이는데 이상적이며, 나노-스케일 소자 구조를 해석함에 있어 양자 역학적 시뮬레이션이 필수적임을 알 수 있었다.

Keywords

References

  1. D. Hisamoto, Wen-chin Lee, Jakub Kedzierski, Hideki Takeuchi, Kazuya Asano, Charles Kuo, Erik Anderson, Tsu-Jae King, Jeffrey Bokor and Chenming Hu, 'FinFET-A Self-Aliged Double-Gate MOSFET Scalable to 20nm,' IEEE Trans. Electron Devices, vol. 47, p. 2320-2325, Dec. 2000 https://doi.org/10.1109/16.887014
  2. A. Svizhenko, M. P. Anantram, T. R. Govindan and B. Bieg, 'Two-Dimensional Quantum Mechanical Modeling of Nanotransistors,' J. Appl, Phys, vol. 91, no. 4, p. 2343-2354, 2002 https://doi.org/10.1063/1.1432117
  3. J. Kedzierski, David M. Fried, Edward J. Nowak, Thomas Kanarsky, Jed H. Rankin, Hussein Hanafi, W. Natzle, Diane Boyd, Ying Zhang, Ronnen A. Roy, J. Newbury, Chienfan Yu, Qingyun Yang, P. Saunders, Christa P. Willets, A. Johnson, S. P. Cole, H. E. Young, N. Carpenter, A. Rakowski, Beth Ann Rainey, Peter E. Cottrell, Meikei Jeong and H. S. Philip Wo, 'High-Performance Symmetric-Gate and CMOS-Compatible Vt Asymmetric-Gate and CMOS-Compatible Vt Asymmetric-Gate FinFET Devices,' Tech. Dig. IEDM, p. 437-440, 2001
  4. M. Sabathil, S. Hackenbuchner, J. A. Majewski, G. Zandler, P. Vogl, J. Comp. Electronics, vol. 1, p. 81-85, 2002 https://doi.org/10.1023/A:1020719928653
  5. S. E. Laux, A. Kumar and M. V. Fischet, 'QDAME Simulation of 7.5nm Double-Gate Si nFETs with Differing Acess Geometries,' Tech. Dig. IEDM, p. 715-718, 2002 https://doi.org/10.1109/IEDM.2002.1175938
  6. X. Huang, Wen-Chin Lee, Charles Kuo, Digh Hisamoto, Leland Chang Jakub Kedzierski, Erik Anderson, Hideki Takeuchi, Yang-Kyu Choi, Kazuya Asano, Vivek Subramanian Tsu-Jae King, Jeffrey Bokor and Chenming , 'Sub-50nm FinFET : PMOS,' Tech. Dig. IEDM. p. 67-70. 1999 https://doi.org/10.1109/IEDM.1999.823848
  7. D. S. Woo, J. H. Lee, W. Y. Choi, B. Y. Choi, Y. J. Choi, J. D. Lee and B. G. Pa, 'Electrical Characteristics of FinFET with Vertically Nonuniform S/D Doping Profile,' IEEE Trans on Nanotechnology, vol. 1, no. 4, p. 233-236, Dec. 2002 https://doi.org/10.1109/TNANO.2002.807373