Diffraction Behaviors of New Photopolymers and their Diffuser Properties

  • Yoon, Hyuk (College of Environment and Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Kim, Jae-Hong (College of Environment and Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Lee, Seung-Hwan (College of Environment and Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Paek, Sang-Hyon (College of Environment and Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Choi, Dong-Hoon (College of Environment and Applied Chemistry, Institute of Natural Sciences, Kyung Hee University)
  • Published : 2004.03.24

Abstract

Photopolymers are quite promising candidates for holographic data storage and diffusers because of their high sensitivity and high refractive index modulation. New photopolymers were prepared using the cellulose ester binder bearing different kinds of monomer. The holographic gratings were elaborated successfully in these photopolymer samples by conventional optical interference method. We investigated the dynamic behavior of the diffraction efficiency and the effect of the functionality of the monomer doped into the polymer binder. Triacrylate monomer doped photopolymer showed the highest diffraction efficiency of around 80-90 %, even under low intensity of writing beam (I=2 mW/$cm^2$). We inscribed the gratings of the glass diffuser on the surface of the photopolymer and investigated their diffusion properties.

Keywords

References

  1. A. Tork, P. Nagtegaele, and T. V. Galstian, Synth. Metals, 127, 81 (2002) https://doi.org/10.1016/S0379-6779(01)00600-2
  2. R. A. Lessard and G. Manivannan, Proc. SPIE, 2405, 2 (1995) https://doi.org/10.1117/12.205350
  3. T. Lippert, C. David, M. Hauer, T. Masubuchi, H. Masuhara, K. Nomura, O. Nuyken, C. Phipps, J. Robert, T. Tada, K. Tomita, and A. Wokaun, Appl. Surf. Sci., 186, 14 (2002) https://doi.org/10.1016/S0169-4332(01)00656-0
  4. A. Pu, K. Curtis, and D. Psaltis, Opt. Eng., 35, 2824 (1996) https://doi.org/10.1117/1.600967
  5. B. Yang, K. Byun, and B. Lee, Practical Holography XVI and Holographic Materials, Proc. SPIE 4659, 226 (2002) https://doi.org/10.1117/12.469272
  6. U. S. Rhee, H. J. Caulfield, C. S. Vikram, and J. Sharnir, Appl. Opt., 34, 846 (1995) https://doi.org/10.1364/AO.34.000846
  7. P. S. Ramanujam, S. Hvilsted, F. Ujhelyi, P. Koppa, E. Lorincz, G. Erdei, and G. Szarvas, Synth. Metals, 124, 145 (2001) https://doi.org/10.1016/S0379-6779(01)00454-4
  8. W. J. Gambogi. A. M. Weber, and T. J. Trout, Proc. SPIE, 2043, 2 (1993)
  9. V. Weiss and E. Millul, Appl. Surf. Sci., 106, 293 (1996) https://doi.org/10.1016/S0169-4332(96)00401-1
  10. L. Dhar, M. G. Schnoes, T. L. Wsocki, H. Bair, M. Schilling, and C. Boyd, Appl. Phys. Lett., 73, 269 (1998)
  11. A. Be1endez, A. Fimia, L. Carretero, and F. mateos, Appl. Phys. Lett., 67, 5928 (1999)
  12. O. Henneberg, T. Geue, M. Saphiannikova, U. Pietsch, P. Rochon, and A. Natansohn, Appl. Surf. Sci. 182, 272 (2001) https://doi.org/10.1016/S0169-4332(01)00444-5
  13. Macromol. Res., 11(1), 36(2003) https://doi.org/10.1007/BF03218275