Abstract
Mixtures type PCM, $H_2O$-NaOH that has relatively large capacity of the latent heat and long duration of phase change temperature was developed and experimentally analyzed for the low temperature storage of the food and medical products. The results could be summarized as follows; 1. Borax as nucleating agent and acrylic polymer as thickening agent were added to $H_2O$ to prevent the supercooling and phase separation. 2. Phase change (solid$\leftrightarrows$liquid) duration of $H_2O$ added with NaOH was prolonged longer 50% than that of pure $H_2O$. 3. Phase change temperature of the latent heat material, $H_2O$-NaOH was $1.5\sim2^{\circ}C$ the maximum latent Heat was 279 kJ/kg at the NaOH addition of 1.3 wt.%. 4. The specific heat of $H_2O$-NaOH at the solid and liquid state was increased in proportion to the wt.% of NaOH, when NaOH of $1.15\sim1.60$ wt.% was added to $H_2O$, the specific heat of the solid state was increased from 3.19 kJ/kg to 5.84 kJ/kg and that of liquid state from 7.8 kJ/kg to 10.28 kJ/kg. 5. When NaOH of $1.15\sim1.60$ wt.% was added to $H_2O$, the total heat storage capacity composed of sensible and latent heat was $313\sim331.3$ kJ/kg and the maximum heat storage capacity was occurred at NaOH addition of 1.30 wt. %.