DOI QR코드

DOI QR Code

A Flow Cytometric Study of Autotrophic Picoplankton in the Tropical Eastern Pacific

Flow cytometer를 이용한 열대 동태평양의 독립영양 극미소 플랑크톤 연구

  • Noh, Jae-Hoon (Marine Living Resources Research Division, KORDI) ;
  • Yoo, Sin-Jae (Marine Living Resources Research Division, KORDI) ;
  • Lee, Mi-Jin (Policy Coordination Department, KORDI) ;
  • Son, Seung-Kyu (Marine Geoenvironment and Resources Research Division, KORDI) ;
  • Kim, Woong-Seo (Marine Geoenvironment and Resources Research Division, KORDI)
  • 노재훈 (한국해양연구원 해양생물자원연구본부) ;
  • 유신재 (한국해양연구원 해양생물자원연구본부) ;
  • 이미진 (한국해양연구원 정책조정실) ;
  • 손승규 (한국해양연구원 해저환경.자원연구본부) ;
  • 김웅서 (한국해양연구원 해저환경.자원연구본부)
  • Received : 2004.04.29
  • Accepted : 2004.05.28
  • Published : 2004.06.30

Abstract

The effects of environmental forcing on autotrophic picoplankton distributional patterns were investigated for convergence ($5^{\circ}N$), divergence ($9^{\circ}N-10^{\circ}30'N$) and oligotrophic ($17^{\circ}N$) sites in the tropical eastern Pacific during 2001 and 2003 KODOS (Korea Deep Ocean Study) cruises. The distributions of picoplankton populations - Prochlorococcus, Synechococcus and picoeukaryotes algae - were determined by flow cytometric analyses. Latitudinal variations in abundance maxima, vertical profiles, integrated abundance (0-150 m), and estimated carbon biomass were contrasted for each site according to three hydrological conditions. Prochlorococcus showed consistently high abundance in the surface mixed layers of all sites at $1\;{\times}\;10^5{\sim}3\;{\times}\;10^5\;cells\;ml^{-1}$ and showed declining abundance below these layers. However, these decreasing rates were not particularly sharp showing considerably high abundance at $1\;{\times}\;10^4\;cells\;ml^{-1}$ or higher even at 100 m depth. Vertical profiles of Synechococcus and picoeukaryotes were generally parallel to each other in all sites. A clear abundance maximum was observed at divergence site at or slightly above the pycnocline depth. Higher abundance was observed at the surface mixed layer for convergence site but a sharp decrease was observed below the pycnocline. However, there was no significant abundance fluctuation with depth at more oligotrophic site ($17^{\circ}N$). Integrated cell abundance of Prochlorococcus was high in the oligotrophic site at $2.17\;{\times}\;10^{13}\;m^{-2}$, and low in the convergence site at $0.88\;{\times}\;10^{13}\;m^{-2}$. However, opposite pattern was observed for Synechococcus and picoeukaryotes where relatively high integrated cell abundance was shown in the convergence site. Estimated carbon biomass of Prochlorococcus contributed 30.4-80.3% of total autotrophic picoplankton carbon showing the highest contribution in the oligotrophic site and the lowest contribution in the convergence site. Synechococcus contribution of total autotrophic picoplantkon carbon biomass was lower than 5.8% for most of sites except the convergence site where Synechococcus contributed 23.2% of picoplankton carbon biomass. Carbon biomass of picoeukaryotes was 18.8-46.4% showing the highest carbon biomass at the convergence site. Overall, Prochlorococcus showed higher cell abundance and carbon biomass and exhibited different reaction to hydrological conditions when compare with the other two major autotrophic picoplankton groups.

Keywords

Acknowledgement

Grant : 심해저광물자원탐사사업

Supported by : 해양수산부

References

  1. 해양수산부, 2004. 심해저 자원탄사 및 환경연구 보고서 (I). 해양수산부 보고서 CRPM197-00-1582-5. 770 p.
  2. Andersen, R.A., G.W. Saunders, M.P. Paskind, and J. Sexton. 1993. Ultrastructure and 18S rRNA gene sequence for Pelagomonas calceolata gen. and sp. nov. and the description of a new algal class, the Pelagophyceae class nov. J. Phycol., 29, 701-715. https://doi.org/10.1111/j.0022-3646.1993.00701.x
  3. Bearman, G. 1989. Ocean circulation. The open university. Pergamon Press. Toronto. 238 p.
  4. Bidigare, R.R. and M.E. Ondrusek. 1996. Spatial and temporal variability of phytoplankton pigment distributions in the central equatorial Pacific Ocean. Deep-Sea Res. II, 43, 809-833. https://doi.org/10.1016/0967-0645(96)00019-7
  5. Bitterman, D.S. and D.V. Hansen. 1989. Direct measurements of current shear in the tropical Pacific Ocean and its effect on drift buoy performance. J. Atmos. Ocean Tech., 6, 274-279. https://doi.org/10.1175/1520-0426(1989)006<0274:DMOCSI>2.0.CO;2
  6. Blanchot, J., J.M. Andre, C. Navarette, J. Neveux, and M.H. Radenac. 2001. Picophytoplankton in the equatorial Pacific: vertical distributions in the warm pool and in the high nutrient low chlorophyll condition. Deep-Sea Res. I, 48, 297-314. https://doi.org/10.1016/S0967-0637(00)00063-7
  7. Campbell, L., H.A. Nolla, and D. Vault. 1993. Photosynthetic picoplankton community structure in the subtropical north Pacific Ocean near Hawaii(station ALOHA). Deep-Sea Res. I, 40, 2043-2060. https://doi.org/10.1016/0967-0637(93)90044-4
  8. Campbell, L., H.A. Nolla, and D. Vault. 1994. The importance of Prochlorococcus to community structure in the central north Pacific Ocean. Limnol. Oceanogr., 39, 954-961. https://doi.org/10.4319/lo.1994.39.4.0954
  9. Campbell, L., H. Liu, H. Nolla, and D. Vaulot. 1997. Annual variability of phytoplankton and bacteria in the subtropical north Pacific Ocean at station ALOHA during the 1991-1994 ENSO event. Deep-Sea Res. I, 44, 167-192. https://doi.org/10.1016/S0967-0637(96)00102-1
  10. Charpy, L. and J. Blanchot. 1998. Photosynthetic picoplankton in French Polynesian atoll lagoons: estimation of taxa contribution to biomass and production by flow cytometery. Mar. Ecol. Prog. Ser., 162, 57-70. https://doi.org/10.3354/meps162057
  11. Chavez, F.P., K.R. Buck, S.K. Service, J. Newton, and T. Barber. 1996. Phytoplankton variability in the central and eastern Pacific. Deep-Sea Res. II, 43, 835-870. https://doi.org/10.1016/0967-0645(96)00028-8
  12. Chisholm, S.W., R.J. Olson, E.R. Zetter, R. Goerike, J.B. Waterburry, and N.A. Welschmeyer. 1988. A novel freeliving prochlorophyte abundant in the oceanic euphotic zone. Nature, 334, 340-343. https://doi.org/10.1038/334340a0
  13. Chisholm, S.W., S.L. Frankel, R. Goerike, R.J. Olson, B. Palenik, J.B. Waterburry, L. West-Johnsrud, and E.R. Zetter. 1992. Prochlorococcus marinus Nov. Gen. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll-a and b. Arch. Microbiol., 157, 297-300. https://doi.org/10.1007/BF00245165
  14. Chisholm, S.W. and F.M.M. Morel. eds. 1991. What controls phytoplankton production in nutrient-rich areas of the open ocean? Limnol. Oceanogr., 36, 1507-1970. https://doi.org/10.4319/lo.1991.36.8.1507
  15. Goericke, R. and D.J. Repeta. 1993. Chlorophylls a and b and divinyl chlorophylls a and b in the open subtropical north Atlantic Ocean. Mar. Ecol. Prog. Ser., 101, 307-313. https://doi.org/10.3354/meps101307
  16. Goericke, R. and N.A. Welschmeyer. 1993. The marine prochlorophyte Prochlorococcus contributes significantly to phytoplankton biomass and primary production in the Sargasso Sea. Deep-Sea Res. I, 40, 2283-2294. https://doi.org/10.1016/0967-0637(93)90104-B
  17. Guillou, L., M.J. Chréiennot-Dinet, L.K. Medlin, H. Claustre, S. Loiseauxde Goér, and D. Vaulot. 1999. Bolidomonas: a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). J. Phycol., 35, 368-381. https://doi.org/10.1046/j.1529-8817.1999.3520368.x
  18. Landry, M.R., J. Kirshtein, and J. Constantinou. 1996. Abundance and distribution of picoplankton in the central equatorial Pacific from $12^{\circ}N$ to $12^{\circ}S$, $140^{\circ}W$. Deep-Sea Res. II, 43, 871-890. https://doi.org/10.1016/0967-0645(96)00018-5
  19. Landry, M.R. and D.L. Kirchman. 2002. Microbial community structure and variability in the tropical Pacific. Deep-Sea Res. II, 49, 2669-2693. https://doi.org/10.1016/S0967-0645(02)00053-X
  20. Le Borgne, R., R.A. Feely, and D.J. Mackey. 2002. Carbon fluxes in the equatorial Pacific: a synthesis of the JGOFS programme. Deep-Sea Res. II, 49, 2425-2442. https://doi.org/10.1016/S0967-0645(02)00043-7
  21. Le Bouteiller, A. and J. Blanchot. 1991. Size distribution and abundance of phytoplankton in the Pacific equatorial upwelling. La Mer, 29, 175-179.
  22. Moon-van der Staay, S.Y., R. De Wachter, and D. Vaulot. 2001. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature, 409, 607-610. https://doi.org/10.1038/35054541
  23. Moore, L.R., R. Goericke, and S.W. Chisholm. 1995. Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar. Eco. Prog. Ser., 116, 259-275. https://doi.org/10.3354/meps116259
  24. Moore, L.R., G. Rocap, and S.W. Chisholm. 1998. Physiology and molecular physiology of coexisting Prochlorococcus ecotypes. Nature, 393, 464-467. https://doi.org/10.1038/30965
  25. Moore, L.R. and S.W. Chisholm. 1999. Photophysiology of the marine cyanobacterium Prochlorococcus: ecotype differences among cultured isolates. Limnol. Oceanogr., 44, 628-638. https://doi.org/10.4319/lo.1999.44.3.0628
  26. Moore, L.R., A.F. Post, G. Rocap, and S.W. Chisholm. 2002. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol. Oceanogr., 47, 989-996. https://doi.org/10.4319/lo.2002.47.4.0989
  27. Olson, R.J., S.W. Chisholm, E.R. Zettler, M.A. Altabet, and J.A. Dusenberry. 1990a. Spatial and temporal distributions of prochlorophyte picoplankton in the north Atlantic Ocean. Deep-Sea Res. I, 37, 1033-1051. https://doi.org/10.1016/0198-0149(90)90109-9
  28. Olson, R.J., S.W. Chisholm, E.R. Zettler, and E.V. Amburst. 1990b. Pigment, size, and distribution of Synechococcus in the north Atlantic and Pacific Ocean. Limnol. Oceanogr., 35, 45-58. https://doi.org/10.4319/lo.1990.35.1.0045
  29. Palenik, B. and R. Haselkorn. 1992. Multiple evolutionary origins of prochlorophytes, the chlorophyll b-containing prokaryotes. Nature, 355, 265-267. https://doi.org/10.1038/355265a0
  30. Parsons, T.R., Y. Maita, and C.M. Lalli. 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, New York. 173 p.
  31. Partensky, F., N. Hoepffener, W.K.W. Li, O. Ulloa, and D. Vaulot. 1993. Photoacclimination of Prochlorococcus sp. (Prochlorophyta) strains isolated from the north Atlantic and Mediterranean Sea. Plant Physiol., 101, 285-296. https://doi.org/10.1104/pp.101.1.285
  32. Partensky, F., J. Blanchot, and D. Vaulot. 1999a. Differential distribution of Prochlorococcus and Synechococcus in oceanic waters: a review. In: Marine cyanobacteria. Charpy L, Larkum A.W.D. eds., Bull. L'Institut. Oceanogr. Monaco No. sp., 19, 457-475.
  33. Partensky, F., W.R. Hess, and D. Vaulot. 1999b. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev., 63, 106-127.
  34. Shimada, A., T. Hasrgawa, I. Umeda, N. Kadoya, and T. Maruyama. 1993. Spatial mesoscale patterns of west Pacific picophytoplankton as analyzed by flow cytometry: their contribution to subsurface chlorophyll maxima. Mar. Biol., 115, 209-215. https://doi.org/10.1007/BF00346337
  35. Tans, P., I.Y. Fung, and T. Takahashi. 1990. Observational constraints on the global atmospheric carbon dioxide budget. Science, 247, 1431-1438. https://doi.org/10.1126/science.247.4949.1431
  36. Urbach, E., D.L. Robertson, and S.W. Chisholm. 1992. Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature, 355, 267-270. https://doi.org/10.1038/355267a0
  37. Vaulot, D., F. Partensky, J. Neveux, R.F.C. Mantoura, and C.A. Llewellyn. 1990. Winter presence of prochlorophytes in surface waters of the northwestern Mediterranean Sea. Limnol. Oceanogr., 35, 1156-1164. https://doi.org/10.4319/lo.1990.35.5.1156
  38. West, N.J., A.S. Wilhelm, N.J. Fuller, R.I. Amann, R. Rippka, A.F. Post, and D.J. Scanlan. 2001. Closely related Prochlorococcus genotypes show remarkably different depth distributions in two oceanic regions as revealed by in situ hybridization using 16S rRNA-targeted oligonucleotides. Microbiology, 147, 1731-1744. https://doi.org/10.1099/00221287-147-7-1731
  39. Wyrtki, K. 1981. An estimate of equatorial upwelling in the Pacific. J. Phys. Oceanogr., 11, 1205-1214.
  40. Wyrtki, K. and B. Kilonsky. 1984. Mean water and current structure during the Hawaii-to-Tahiti shuttle experiment. J. Phys. Oceanogr., 14, 242-254. https://doi.org/10.1175/1520-0485(1984)014<0242:MWACSD>2.0.CO;2

Cited by

  1. Seasonal Variability of Picoplankton Around Ulneung Island vol.17, pp.11, 2008, https://doi.org/10.5322/JES.2008.17.11.1243
  2. The Influences of Coastal Upwelling on Phytoplankton Community in the Southern Part of East Sea, Korea vol.19, pp.4, 2014, https://doi.org/10.7850/jkso.2014.19.4.287