몬모릴로나이트와 일라이트에서 영구전하 측정방법간 비교

Comparison of Methods of Permanent Charge Measurement in Montmorillonite and Illite

  • 이상룡 (고려대학교 환경생태공학부) ;
  • 옥용식 (강원대학교 생물환경학부) ;
  • 최유석 (고려대학교 환경생태공학부) ;
  • 임수길 (고려대학교 환경생태공학부) ;
  • 김정규 (고려대학교 환경생태공학부)
  • Lee, Sang-Ryong (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Ok, Yong-Sik (Division of Biological Environment, Kangwon National University) ;
  • Choi, You-Suk (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Lim, Sookil (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Kim, Jeong-Gyu (Division of Environmental Science and Ecological Engineering, Korea University)
  • 투고 : 2004.04.16
  • 심사 : 2004.06.02
  • 발행 : 2004.06.30

초록

몬모릴로나이트와 일라이트를 대상으로 Hybrid 모델, 세슘흡착법, CEC와 결정분석 및 전원소분석으로 계산한 영구전하량을 상호 비교하였다. 격자구조 계산에 의하면 몬모릴로나이트와 일라이트의 영구전하는 각각 $71.82cmol\;kg^{-1}$, $14.20cmol\;kg^{-1}$로 나타났고. 세슘흡착법으로 구한 영구전하는 격자 구조의 계산 값과 $3.07-6.41cmol\;kg^{-1}$ 이하의 차이를 나타내었다. 따라서 세슘흡착법으로 구한 영구전하 량은 이론적 계산치와 일치함을 알 수 있었다. Hybrid 모델로 구한 영구전하 값은 세슘흡착법과 격자계산법에 비하여 약 5-13배가 과소평가되므로 이 모델을 점토광물의 영구전하 측정에 적용하기는 어려울 것으로 판단되었다. 암모늄 이온을 이용한 양이온교환용량 값의 경우 몬모릴로나이트는 세슘흡착법으로 구한 영구전하 값과 동일하였다. 한편 일라이트에서 영구전하의 이론적 계산치와 CEC 값이 차이를 나타낸 것은 CEC측정에 사용된 암모늄 이온이 층간에 고정된 칼륨이온을 치환시킴으로서 CEC가 상대적으로 높게 평가된 것으로 판단되었다. 이상의 결과를 종합하여 볼 때 영구전하의 함량이 높은 점토광물이나 토양에서 영구전하를 분리 정량하고자 할 때에는 세슘흡착법을 이용하는 것이 바람직할 것으로 판단되었다.

Though diverse methods have been developed to characterize surface charge of soils and pure minerals, there is not still a reliable and rapid method for differentiating permanent charge from variable charge. Thus, it is needed to find out a reasonable method for measuring permanent and pH-dependent charge of soils. In this study various methods such as Cs-adsorption method, Hybrid model, $NH_4{^+}$-adsorption method and theoretical calculation of lattice charge were applied to measure permanent charge of montmorillonite and illite. Calculated lattice charge was $71.82cmol\;kg^{-1}$ and $14.20cmol\;kg^{-1}$ for montmorillonite and illite, respectively. The permanent charge measured by Cs-adsorption method were $78.23cmol\;kg^{-1}$ and $11.13cmol\;kg^{-1}$ for montmorillonite and illite, respectively. The differences between the values measured by Cs-adsorption method and the calculated lattice charge were not different significantly as $6.41cmol\;kg^{-1}$ and $3.07cmol\;kg^{-1}$. But, Hybrid model showed an underestimated values when applied to clay minerals with predominant amounts of permanent charge. The experimental results showed Cs-adsorption method was more reasonable for permanent charge measurement than the Hybrid model for illlte or montmorillonitetype clays.

키워드

참고문헌

  1. Anderson, S. J., and G. Sposito. 1991. Cesium-adsorption method for measuring accessible structural surface charge. Soil Sci. Soc. Am. J. 55:1569-1576 https://doi.org/10.2136/sssaj1991.03615995005500060011x
  2. Anderson, S. J., and G. Sposito. 1992. Proton surface-charge density in soils with structural and pH-dependent charge. Soil Sci. Soc. Am. J. 56:1437-1443 https://doi.org/10.2136/sssaj1992.03615995005600050017x
  3. Gillman, G. P. 1984. Using variable charge characteristics to understand the exchangeable cation status of oxic soils. Aust. J. Soil Res. 22:71-80 https://doi.org/10.1071/SR9840071
  4. Gillman, G. P., and E. A. Sumpter. 1986. Surface charge characteristics and lime requirements of soils derived from basaltic, granitic, and metamorphic rocks in high-rainfall tropical Queensland. Aust. J. Soil Res. 24:173-192 https://doi.org/10.1071/SR9860173
  5. Lewis-Russ, A. 1991. Measurement of surface charge of inorganic geologic materials: techniques and their consequences. Adv. Agron. 46:199-243 https://doi.org/10.1016/S0065-2113(08)60581-7
  6. Lim, S., M. Y. Lee, S. H. Hyun, S. E. Lee, C. Y. Jeong, and J. G. Kim. 1998. Effects of soil organic matter on surface charge characteristics of paddy and upland soils. Korean J. Soil Sci. Fert. 31:414-419
  7. Lim, S., C. Y. Chung, Y. S. Ok, and J. G. Kim. 2002. Competitive adsorption of Cd and Cu on surface of humic acid extracted from peat. Korean J. Soil Sci. Fert. 35:344-351
  8. Madrid, L., E. Diaz, and F. Cabrera. 1984. Charge properties of mixture of minerals with variable and constant surface charge. J. Soil Sci. 35:373-380 https://doi.org/10.1111/j.1365-2389.1984.tb00293.x
  9. Marcano-Martinez, and M. B. Mcbride. 1989. Comparison of the titration and ion adsorption methods for surface charge measurement in Oxisols. Soil Sci. Soc. Am. J. 53:1040-1045 https://doi.org/10.2136/sssaj1989.03615995005300040009x
  10. Moon, H. S. 1996. Clay mineralogy. Mineumsa Press, Seoul, Korea
  11. NIAST. 2000. Method of soil and plant analysis. RDA, Suwon, Korea
  12. Ok, Y. S., Y. S. Choi, S. E. Lee, S. Lim, N. H. Chung, and J. G. Kim. 2001. Effects of soil component and index ion on the surface charge characteristics of some Korean arable soils. Korean J. Soil Sci. Fert. 34:237-244
  13. Ok, Y. S., S. Lim, and J. G. Kim. 2002. Electrochemical properties of soils: Principles and applications. Life Sci. Natural Resour. Res. 10:69-84
  14. Parker, J. C., L. W. Zelazny, S. Sampath, and W. G. Harris. 1979. A critical evaluation of the extension of zero point of charge (ZPC) theory to soil systems. Soil Sci. Soc. Am. J. 43:668-673 https://doi.org/10.2136/sssaj1979.03615995004300040008x
  15. Tan, K. H. 1992. Principles of soil chemistry. 2nd ed. p. 129-205. Marcel Dekker, Inc., New York, NY, USA
  16. Uehara, G., and G. P. Gillman. 1980. Charge characteristics of soils with variable and permanent charge mineral: I. Theory. Soil Sci. Soc. Am. J. 44:250-252 https://doi.org/10.2136/sssaj1980.03615995004400020008x