Effect of Immobilized Cells of Pantoea agglomerans on Growth Promotion of Rice(Oryza sativa L.) in the Presence of Rock Phosphates

고정화된 Pantoea agglomrans와 인광석의 복합처리가 벼의 생육 촉진에 미치는 영향

  • Chung, Hee-Kyung (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Ryu, Jeoung-Hyun (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Lee, Hyoung-Seok (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Park, Myoung-Su (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Madhaiyan, Munusamy (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Seshadri, Sundaram (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
  • Received : 2003.12.06
  • Accepted : 2004.02.02
  • Published : 2004.02.29

Abstract

A phosphate solubilizig bacterium, Pantoea agglomerans, was isolated from rhizosphere soils collected from Chungbuk area. A greenhouse experiment was conducted to study the effect of combined application of rock phosphate and P. agglomerans inoculation on plant growth and phosphate accumulation of rice (Oryza sativa L.). Apart from control that received no inputs, six treatments were planned as follows; 1) seed bacterization, 2) free cell inoculation and 3) bacteria immobilized beads inoculation, individually and in combination with 1 and 2.5 g of rock phosphate per pot. The results showed that plant growth and phosphate uptake were significantly enhanced as a result of bacterial inoculation. Bacterial inoculation in the form of immobilized beads and 1 g of rock phosphate was found to affect positively the rice plant growth and phosphorus accumulation than other treatments. The available phosphate concentration of the pot mixture also found improved as a result of P. agglomerans inoculation. A positive correlation was observed between the phosphate concentration in the pot mixture and phosphate accumulation in plant.

충북지역의 근권 토양으로부터 선발한 인산가용화 균인 Pantoea agglomeraans와 인광석을 복합처리하여 벼(Oryza sativa L.)의 생육 및 인산 흡수량에 미치는 영향을 온실내에서 실험하였다. 본 실험은, 종자에 박테리아를 적용시킨 것(bactenzation), 독립 세포 및 고정화된 세포(immobilized cell)를 접종시킨 후, 인광석 1 g과 2.5 g을 각각 시비한 6처리구와 무처리구로 나누어 비교 실험하였다. 인산가용화균을 접종한 처리구가 무처리구에 비하여 벼의 생육 및 인산 흡수량을 증대하는 경향을 나타냈으며, 특히 1 g의 인광석과 고정화된 Pantoea agglomerans를 접종한 처리구에서 다른 처리구들에 비해 가장 우수한 결과를 나타내었다. Pot 충진물내의 유효인산 농도 또한 미생물 접종 처리구에서 증가하였으며, 벼에 흡수된 전인산량과 정의 상관관계가 성립함을 알 수 있었다.

Keywords

References

  1. Azcon, R., J. M. Barea, and D. S. Hayman. 1976. Utilization of rock phosphate in alkaline soil by plants inoculated with mycorrhizal fungi and phosphate solubilizing bacteria. Soil Biol. Biochem. 8:135-138 https://doi.org/10.1016/0038-0717(76)90078-X
  2. Banik, S., and B. K. Dey. 1981. Phosphate solubilizing microorganisms of a lateritic soil: III. Effect of inoculation of some tricalcium phosphate solubilizing microorganisms on available phosphorus content of rhizosphere soils of rice (Oryza sativa L. cv IR 20) Plants and their uptake of phosphorus. Zbl. Bakt. Int. J. Med. M. 136:493-501
  3. Bhadoria P. S., B. Steingrobe, N. Claassen, and H. Liebersbach. 2002. Phosphorus efficiency of wheat and sugar beet seedlings grown in soils with mainly calcium, or iron and aluminum phosphate. Plant Soil 246:41-52 https://doi.org/10.1023/A:1021567331637
  4. Brown, M. E. 1973. Soil bacteriostasis limitation in growth of soil and rhizosphere bacteria. Can. J. Microbiol. 19:195-199 https://doi.org/10.1139/m73-030
  5. Chung, H. K. 2003. Identification and characterization of phosphate solubilizing bacteria isolated from Rhizosphere. M.S. Thesis, Chungbuk National University, Cheongju, Korea
  6. Dommergues, Y. R., H. G. Diem, and C. Davies. 1979. Polyacrylamide entrapped Rhizobium as an inoculant for legumes. Appl. Enviion. Microbiol. 37:779-781
  7. Fisher, R. A. 1958. Statistical methods for research workers. Oliver and Boyd, London, UK
  8. Gadagi, R. S., and T. M. Sa. 2002. New isolation method for microorganisms solubilizing iron and aluminium phosphates using dyes. Soil Sci. Plant Nutr. 48:615-618 https://doi.org/10.1080/00380768.2002.10409246
  9. Gyaneshwar, P., G. Naresh Kumar, L. J., Parekh, and P. S. Poole. 2002. Role of microorganisms in improving P nutrition of plants. Plant Soil 245:83-93 https://doi.org/10.1023/A:1020663916259
  10. Holt, J. G., N. R. Krieg, P. H. A. Sneath, J. T. Staley, and S. T. Williams, S. T. 1994. Bergey's manual of determinative bacteriology, 9th ed. Williams & Wilkins, Baltimore, MD, USA
  11. Jackson, M. L. 1958. Soil chemical analysis. Prentice Hall, Englewood Cliffs, NJ, USA
  12. Jisha, M. S., and A. R. Algawadi. 1996. Nutrient uptake and yield of sorghum (Sorghum bicolor L. Moench) inoculated with phosphate solubilizing bacteria and cellulolytic fungus in a cotton stalk amended vertisol. Micmbiol. Res. 151:213-217
  13. Khan, J. A., and R. M. Bhatnagar. 1977. Studies on solubilization of insoluble phosphates by microorganisms. I. Solubilization of Indian phosphates rocks by Aspergillus niger and Penicilium sp. Fert. Technol. 14:329-333
  14. Khan, M. S., A. Zaidi, and M. Amil. 1997, Associative effect of Bradyrhizobium sp. (vigna) and phosphate solubilizing bacteria on mungbean (Vigna radiata (L.) Wilczek). Biojournal 9:101-106
  15. Khasawneh, F. E., and E. C. Doll. 1978. The use of phosphate rock for direct application to soils. Adv. Agron. 30:159-206
  16. Kim K. Y., H. B. Hwang, Y. W. Kim, H. J. Kim, K. H. Park, Y. C. Kim, and K. Y. Seong. 2002. Organic acid production and phosphate solubilization by Enterobacter intermedium 60-2G. Korean J. Soil Sci. Fert. 35:59-67
  17. Olsen, S. R., C. V. Cole, F. S. Watanabe, and L. A. Dean. 1954. Estimation of available phosphorus in soils by extracting with sodium bicarbonate. USDA Circ. 939. US Gov. Print. Office, Washington, D.C., USA
  18. Park M. S., R. S. Gadagi, S. Olayvanh, C. W. Kim, H. Y. Chung, K. S. Ahn, and T. M. Sa. 2001. Performance of MPS bacterial inoculation in two consecutive growth of maize plants. Korean J. Environ. Agric. 20:335-339
  19. Pikovskaya, R. I. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiologiya. 17:362-370
  20. Reyes, I., L. Bernier, and H. Antoun. 2002. Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicllium rugulosum. Microb. Ecol. 44:39-48 https://doi.org/10.1007/s00248-002-1001-8
  21. Richardson, A. E. 1996. Sail microorganisms and phosphorus availability. p. 50-.62. In C. E. Pankhurst et al. (ed.) Soil biota, management in sustainable farming systems. CSIRO, Victoria, Australia
  22. Sattar, M. A., and A. C. Gaur. 1987. Production of auxins and gibberellins by phosphate dissolving microorganisms. Zentralbl Mikrobiol. 142:393-395
  23. Smith, F. W. 2002. The phosphate uptake mechanism. Plant Soil. 245:105-114 https://doi.org/10.1023/A:1020660023284
  24. Taha, S. M., S. A. Z. Mahmoud, A. Halim Al Damaty, and A. M. Abd El Hafez. 1969. Activity of phosphate dissolving bacteria in Egyptian soils. Plant Soil. 31:149-160 https://doi.org/10.1007/BF01373034
  25. Vassilev, N., T. Marcia, M. Vassileva, R. Azcon, and J. M. Barea. 1997. Rock phosphate solubilization by immobilized cells of Enterobacter sp. in fermentation and soil conditions. Bioresource Technol. 61:29-32 https://doi.org/10.1016/S0960-8524(97)84694-9
  26. Vassileva M., R. Azcon, J. M. Barea, and N. Vassilev. 1999. Effect of encapsulated cells of Enterobacter sp. on plant growth and phosphate uptake. Bioresource Technol. 67:229-232 https://doi.org/10.1016/S0960-8524(98)00130-8
  27. Vazquez, P., G. Holguin, M. E. Puente, A. Lopez Cortez, and Y. Bashan. 2000. Phosphate solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol. Fert. Soils 30:460-468 https://doi.org/10.1007/s003740050024
  28. Woodward, J. 1988. Methods of immobilization of microbial cells. J. Microbiol. Meth. 8:91-102 https://doi.org/10.1016/0167-7012(88)90041-3