Inorganic Phosphate Solubilization by Immobilized Pantoea agglomerans under in vitro Conditions

고정화된 Pantoea agglomerans에 의한 난용성 인산의 가용화

  • Kim, Eun-Hee (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Park, Sung-Ae (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Park, Myoung-Su (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Yang, Jin-chul (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Madhaiyan, Munusamy (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Seshadri, Sundaram (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
  • Received : 2003.12.06
  • Accepted : 2004.02.05
  • Published : 2004.02.29

Abstract

It is now widely accepted that immobilized microbial cells can overcome some of the problems associated with microbial survival stability, efficacy, storage, transportation and ease of application in agricultural environments. Pantoea agglomerans, a phosphate solubilizing bacterium, was immobilized in alginate, agar and gelatin carriers. All the three immobilfized carriers with bacterial cells of P. agglomerans were compared for solubilization of tricalcium phosphate in pure liquid cultures. While alginate beads were tested for phosphate solubilization on alternate days up to five days, agar beads and gelatin cubes were subjected for one time phosphate solubilization analysis after seven days. Both alginate and agar immobilized cells of P. agglomerans exhibited higher efficiency in increasing the solubilizaliun of tricalcium phosphate than gelatin immobilized cells. The culture filtrate of alginate bead inoculation treatment registered a rapid increase in soluble phosphate concentration upon incubation. A corresponding decrease in the pH of the medium was also observed in all the treatments.

최근에는 친환경 농업을 위하여 사용되는 미생물 비료의 안정성 유지와 효능, 저장 및 운송 등에 대한 어려움 및 불편함을 극복하기 위해서 미생물을 담체에 고정화하여 생물비료로 사용하고 있다. 본 실험에서는 인산가용화 미생물인 Pantoea agglomerans를 alginate, agar 및 gelatin에 고정화시킨 후 tricalcium phosphate가 첨가된 액체 배지에서 배양하여 인산가용화능을 비교하였으며, 또한 alginate에 고정화된 균에 의한 인산가용화능을 경시적으로 조사하였다. 고정화를 위한 담체로 alginate나 agar를 사용하였을 때, 고정화된 P. agglomerans의 인산가용화능이 gelatin을 담체로 사용하였을 때보다 우수하였다. Alginate에 고정된 P. agglomerans가 접종된 처리구에는 배양 후 5일까지 유효인산의 농도가 크게 증가하였고 모든 처리 구에서 배지 안의 pH가 감소하였다.

Keywords

References

  1. Bashan, Y. 1998. Inoculants of plant growth promoting bacteria for use in adriculture. Biotechnol. Adv. 16:729-770 https://doi.org/10.1016/S0734-9750(98)00003-2
  2. Bashan, Y., and L. E. Gonzalez. 1999. Long tern survival of the plant growth promoting bacteria Azospirillum brasilense and Pseudomonas fluorescence in dry alginate inoculant. Appl. Microbiol. Biot. 51:262-266 https://doi.org/10.1007/s002530051391
  3. Chung, H. K. 2003. Identification of phosphate solubilizing bacteria isolated from rhizosphere. M.S. Thesis, Chungbuk National University, Cheongju, Korea
  4. de Alteriis, E,. P. Parascandola, S. Salvadore, and V. Sardi. 1985. Enzymc immobilization within insolubilized gelatin. J. Chem. Technol. Biot. 35(B):60 https://doi.org/10.1002/jctb.280350111
  5. Deelereck, S., D. G. Strullu, C. Plenchette, and T. Guillemette. 1996. Entrapment of in vitro produced spores of Glomus versiforme in alginate beads: in vitro and in vivo inoculum potentials. J. Biotechnol. 48:51-57 https://doi.org/10.1016/0168-1656(96)01396-X
  6. Ehrlich, H. L. 1990. Mikrobiologische und biochemische Verfahren stechnik, In A. Einsele et al. (ed.) Geomicrobiology, 2nd ed. VCH Verlagsgesellschafat, Weinheim, Germany
  7. Fedirici, F. 1993. Potential application of viable, immobilized fungal cell systems. World J. Microb. Biot. 9:495-502 https://doi.org/10.1007/BF00386282
  8. Fenice, M., L. Selbman, F. Federici, and N. Vassilev. 2000. Application of encapsulated Penicillium variabile P16 in solubilization of rock phosphate. Bioresource Technol. 73:57-162
  9. Goldstein, A. H., R. D. Rogers, and G. Mead. 1993. Separating phosphate from ores via bioprocessing. Nat. Biotechnol. 11:250-254 https://doi.org/10.1038/nbt0393-250
  10. Hinsinger, P. 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root induced chemical changes: a review. Plant Soil 237:173-195 https://doi.org/10.1023/A:1013351617532
  11. Lopez, A., N. Lazaro, and A. M. Marques. 1997. The interphase technique: a simple method of cell immobilization in gel beads. J. Microbiol. Meth. 30:231-234 https://doi.org/10.1016/S0167-7012(97)00071-7
  12. Murphy, J., and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 27:31-36 https://doi.org/10.1016/S0003-2670(00)88444-5
  13. Pikovskaya, R. I. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiologiya 17:362-370
  14. Rodrigues, H., and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17:319-339 https://doi.org/10.1016/S0734-9750(99)00014-2
  15. Van Elsas, J. D., and C. E. Heijnen. 1990. Methods for the introduction of bacteria into soil: a review. Biol. Fert. Soils 10:127-133 https://doi.org/10.1007/BF00336248
  16. Vassilev, N., M. Vassileva, and R. Azcon. 1997a. Solubilization of rock phosphate by immobilized Aspergillus niger. Bioresource Technol. 59:1-4 https://doi.org/10.1016/S0960-8524(96)00137-X
  17. Vassilev, N., M. Toro, M. Vassileva, R. Azcon, and J. M. Barea. 1997b. Rock phosphate solubilization by immobilized cells of Enterobacter sp. in fermentation and soil conditions. Bioresource Technol. 61:29-32 https://doi.org/10.1016/S0960-8524(97)84694-9
  18. Vassileva, M., R. Azcon, J. M. Barea, and N. Vassilev. 1998. Application of an encapsulated filamentous fungus in solubilization of inorganic phosphate. J. Biotechnol. 63:67-72 https://doi.org/10.1016/S0168-1656(98)00074-1
  19. Vassileva, M., R. Azcon, J. M. Barea, and N. Vassilev. 2000. Rock phosphate solubilization by free and encapsulated cells of Yarowia lipolytica. Process Biochem. 35:693-697 https://doi.org/10.1016/S0032-9592(99)00132-6
  20. Vassilev, N., M. Vassileva, R. Azcon, and J. M. Barea. 2001. Interactions of an arbuscular mycorrhizal fungus with free or coencapsulated cells of Rhizobium trifoli and Yarowia lipotytica inoculated into a soil plant system. Biotechnol. Lett. 23:149-151 https://doi.org/10.1023/A:1010395813017
  21. Woodward, J. 1988. Methods of immobilization of microbial cells. J. Miciobiol. Meth. 8:91-102 https://doi.org/10.1016/0167-7012(88)90041-3
  22. Zayed, G. 1997. Can immobilization of Bacillus megaterium cells in alginate beads protect them against bacteriophages. Plant Soil 197:1-7 https://doi.org/10.1023/A:1004250221549