Influences of Nutrient Deficiency on the Phytoplankton Community in Pal'tang Reservoir

몇가지 영양염 결핍이 팔당댐의 식물플랑크톤군집에 미치는 영향

  • 김백호 (한양대학교 생명과학과) ;
  • 최지영 (한양대학교 생명과학과) ;
  • 황순진 (건국대학교 지역건설환경공학과) ;
  • 한명수 (한양대학교 생명과학과)
  • Published : 2004.03.31

Abstract

To understand the effect of nutrient deficiency on the plankton community in three stations with different water qualities in Pal'tang Reservoir, Korea, phytoplanktons(> 10 ${\mu}m$) were cultured in nutrient enrichment Allen's media (AM) and nutrient-deficient Allen's media. A distinct shift in the species composition and biomass of phytoplankton (as chlorophyll- a) showed in all treatments. In particular, it was very interesting that the new development of cyanobacterium Microcystis aeruginosa occurred by the Fe-deficient AM. Except for Si, a community growth (as chlorophyll- a) was inhibited in all nutrient deficient treatments. Species diversity after nutrient deficiency was changed to below 2.0; slightly increased in N and P-deficiency, while decreased in Si and Fe, respectively. As suggested, dominance was entirely opposite to diversity. Therefore, the nutrient deficient effectively induced the succession of species and biomass, phytoplankton community, suggesting a possibility as a reliable tool to control the algal bloom in eutrophic lakes and reservoirs.

영양염 (N, P, Si, Fe) 결핍이 팔당호내 서로 다른 3개지점의 식물플랑크톤 군집(>10 ${\mu}m$)에 어떠한 영향을 미치는지 파악하기 위하여 채수한 현장수를 결핍배지에서 일정시간 배양한 후 대조군과 비교 조사하였다. 조사결과, 현장수는 공히 영양물질과 현장수 증류에 따라 서로 다른 종 천이 및 생물량을 나타냈다. 영양염 결핍에 따른 천이는 N, P, Si 결핍군에서는 속(genus)수준에서, Fe결핍에서는 종(species) 수준에서 일어났다. 특히 Fe결핍에서 남조 Microcystis aeruginosa, N 결핍에서 Anabaena의 발달은 매우 흥미로운 결과이다. 또한 모든 결핍군에서 뚜렷한 성장저해 현상을 보였으나 Si 결핍군에서는 생물량 변동이 거의 없었다. 식물플랑크톤 군집은 영양염결핍과 채수지점에 따라 차이를 보였는데, 전체적으로 N,P 결핍군에서는 우점도 감소 및 다양도 증가를 보였으며,Si,Fe 결핍군과는 반대 결과를 보였다. 따라서 영양염 결핍은 조사지점에 따라 다소 차이를 보였으나 식물플랑크톤 종 천이, 생물량 변동 등의 뚜렷한 군집변화를 유도함으로서 수계내 문제조류의 근본적 해결의 가능성을 시사해 주었다.

Keywords

References

  1. 김종민, 박준대, 노혜란, 한명수. 2003. 소양호와 팔당호 수질의 수질 및 계절적 변화. 한국육수학회지 35: 10-20
  2. 장은희, 김정동, 한명수. 2003. 남조류 분해세균 HY0210-AK1 의 분리와 특성 및 Anabaena cylindrica 분해 활성. 환경 생물학회지 21: 194-202
  3. 한명수, 어윤열, 유재근, 유광일, 최영길. 1995. 팔당호의 생태학적 연구 2. 식물플랑크톤의 군집구조의 변화. 한국육수학회지 28: 335-344
  4. Ahn, C.Y., M.H. Park, S.H. Joung, H.S. Kim, K.Y. Jang and H.M. Oh. 2003. Growth inhibition of cyanobacteria by ultrasonic radiation: Laboratory and enclosure studies. Environ. Sci. Technol. 37: 3031-3037
  5. Allen, M.M. 1984. Cyanobacterial cell inclusions. Annu. Rev. Microbial. 38: 1-25
  6. Anderson, G.C. and F.M.M. Morel. 1982. The influences of aqueous iron chemistry on the uptake of iron by the coastal diatom Thallasiosira weissflogii. Limnol. Oecanogr. 27: 789-813
  7. APHA. 1995. Standard methods for the examination of water and wastewater. 19th Ed. APHA, AWWA, WPCF, Washington, p.1134
  8. Bibby, T.S., J. Nield and J. Barber. 2001. Iron deficiency induces the formation of an antenna ring around trimeic photosystem I in cyanobacteria. Nature 412: 743-745
  9. Boekema, E.J., A. Hifney, A.E. Yakushevska, M. Piotrowski, W. Keegstra, S. Berry, K.P. Michel, E.K. Pistorius and J. Kruip. 2001. A giant chlorophyll-protein complex induced by iron deficiency in cyanobateria. Nature 412: 745-748
  10. Brand, L.E., W.G. Sunda and R.R. Guillard. 1983. Limitation of marine phytoplankton reproduction rates by zinc, manganese and iron. Limnol. Oceanogr. 28: 1182-1198
  11. Crosta, X., A. Shemesh, M.E. Salvignac, H. Glider and R. Yam. 2002. Late quaternary variations of elemental ratios (C/Si and N/Si) in diatom-bound organic matter from the Southern Ocean. Deep-Sea Res. II 49: 1939- 1952
  12. DeHaan, H., M.J.W. Veldhuis and J.R. Moed. 1985. Availability of dissolved iron from Tjeukemeer, The Nethelands, for iron-limited growing Scenedesmus quadricauda. Water Res. 19: 235-239
  13. Desikachary, T.V. 1959. Cyanophyta. ICAR New Delhi, p.686
  14. Ettl, H. 1978. Xanthophyceae. 1. Sussw.-Fl. (2 Ed.) 3: 1-530530.
  15. Fitzwater, S.E., K.H. Coale, R.M. Gordon, K.S. Johnson and M.E. Ondrusek. 1996. Iron deficiency and phytoplankton growth in the equatorial Pacific. Deep-Sea Research II 43: 995-1015
  16. Gall, M.P., P.W. Boyd, J. Hall, K.A. Safi and H. Chang. 2001. Phytoplankton processes. Part 1: Community structure during the Sourthern Ocean Iron Release Experiment (SOIREE). Deep-Sea Res. II 48: 2551-2570
  17. Geitler, L. 1932. Cyanophyceae. Krypt-Fl. 14: 1-1196. Goldman, C.R. 1972. The role of minor nutrients in limiting the productivity of aquatic ecosystem. In: nutrient and eutrophication (ed. By Likens GE), pp.22-44, Lawrence,Kansas: American Society of Limnology and Oceanography Special Symposium No.
  18. Graneli, E., P. Carlsson and C. Legrand. 1999. The role of C, N, P in dissolved and particulate organic matter as a nutrient source for phytoplankton growth, including toxic species. Aquatic Ecology 33: 17-27
  19. Hutchins, D.A. 1995. Progress in Phycological Research. Vol. II. (Eds. Chapman D, Round F). pp.1-49. Biopress, Bristol
  20. Hutchins, D.A. and K.W. Bruland. 1998. Iron-limited diatom growth and Si : N uptake ratios in a coastal upwelling regime. Nature 393: 561-564
  21. Hyenstrand, P., E. Ryding and M. Gunnerhed. 1999. Response of pelagic cyanobacteria to iron additions-enclosure experiments from Lake Erken. J. Plankton. Res. 22: 1113-1126
  22. Ishida, Y., B. Kimura, H. Nakahara and H. Kadota. 1982. Analysis of major nutrient effecting Uroglena a bloom in the northen Lake Biwa, by use of algal bioassay. Bull. Jap. Soc. Sci. Fish. 48: 1281-1287
  23. Jackson, T.A. and R.E. Hecky. 1980. Depression of primary productivity by humic matter in lake and reservoir waters of boreal forest zone. Can. J. Fish. Aquat. Sci. 37: 2300-2317
  24. Jan, C., J.C. Roos and A.J.H. Pieterse. 1995. Nutrients, dissolved gases and pH in the Vaal River at Balkfontein, South Africa. Arch. Hydrobiol. 133: 173-196
  25. Kim, B.H. and M.-S. Han. 2003. Usage of bio-agents to control cyanobacterial and diatomal bloom in Pal’tang reservoir, a Korean freshwater. Annual Meeting ofKorean Society of Limnology, Ecology, and Environmenta Biology, P 7~8, June 20~21, Taegu University, Taegu, Korea
  26. Koike, I., H. Ogawa, T. Nagata, R. Fukuda and H. Fukuda. 2001. Silicate to Nitrate ratio of upper sub-artic Pacific and the Bering sea basin in summer; its implication for phytoplankton dynamics. J. Oceanogr. 57: 253-260
  27. Komarek, J. and B. Fott. 1983. Chlorophyceae (Chlorococcales). In: Das Phytoplankton des Subswassers- Systematik Systematikund Biologie (ed. by Huber-Pestalozzi G.), pp. 747-945. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart
  28. Krammer, K. and H. Lange-Bertalot. 1991. Bacillariophyceae. 3. Centrales, Fragilariaceae, Eunotiaceae. Susswasser-flora von Mitteleuropa. (2 Ed.) 2(3): 1-576. Gustav Fischer, Stuttgart
  29. Lund, J.W.G. 1950. Studies on Asterionella formosa HASS. Nutrient depletion the spring maximum. J. Ecol. 38: 1-35
  30. Maxwell, C.D. 1991. Floristic changes in soil algae and cyanobacteria in reclaimed metal-contaminated land at Sudbury, Canada. Water, Air and Soil Pollution 60: 381-393
  31. McNaughton, S.J. 1967. Relationship among functional properties of California Glassland. Nature 216: 168-169
  32. Munch, C.S. 1972. An ecological study of the planktonic chrysophytes of Hall Lake, Washington. Ph.D. Thesis. Seattle: University of Washington
  33. Murphy, T.P., D.R.S. Lean and C. Nalewajko. 1976. Bluegreen algae: their excretion of iron-selective chelators enables them to dominate other algae. Science 192: 900-902
  34. Naoshi, J., S. Takeda and C.S. Wong. 2001. Change in the concentrations of iron in different size fractions during a phytoplankton bloom in controlled ecosystem enclosures. J. Exp. Mar. Biol. Ecol. 258: 237-255
  35. Ormerod, S.J. 2003. Restoration in applied ecology: editor’s introduction. J. Appl. Ecol. 40: 44-50
  36. Park, M.H., C.Y. Ahn, B.D. Yoon and H.M. Oh. 2003. Growth inhibition of Microcystis aeruginosa by rice straw extract. Letter Applied Microbiol. Submitted
  37. Peter, A.T. and H. Wasele. 1996. Nutrient limitation of phytoplankton in the upper Swan River estuary, Western Australia. Mar. Freshwater Res. 47: 659-667
  38. Pielou, E.C. 1966. The measurement of diversity in different types of biological collections. J. Theo. Biol. 13: 131-144
  39. Pollingher, U., B. Kaplan and T. Berman. 1995. The impact of iron and chelators on Lake Kinneret phytoplankton. J. Plankton. Res. 17: 1977-1992
  40. Popovsky, J. and L.A. Pfiester. 1990. Dinophyceae (Dinoflagellaida). In 'Susswasserflora von Mitteleuropa' (Eds. by Ettl H, Gerloff J, Hyenig H, Mollerhauer D) Brgrundet von A. Pascher, Band 6. pp.272. Gustav Fischer Verlag, Jenna Stuttgart
  41. Redfield, A.C. 1958. The biological control of chemical factors in the environment. Am. Sci. 46: 205-255
  42. Reynolds, C.S. 1978. The plankton of the northen-west Midland meres. Occasional Papers of the Caradoc and Severn Valley Field Club. No. 236+xxiii
  43. Reynolds, C.S. 1984. The ecology of freshwater phytoplankton. Cambridge University Press
  44. Sandgren, C.D., J.P. Smol and J. Kristiansen. 1995. Chrysophyte algae. Ecology, phylogeny and development. Cambridge University Press. p.399
  45. Schindler, D.W. 1974. Eutrophication and recovery in experimental lakes: implications for lake management Science 184: 897-899
  46. Schindler, D.W. 1977. Evolution of phosphorus limitation in lakes. Science 195: 260-262
  47. igee, D.C., R. Glenn, M.J. Andrews, E.G. Bellinger, R.D. Butler, H.A.S. Epton and R.D. Hendry. 1999. Biological control of Cyanobacteria : principles and possibilities. Hydrobiologia 395/396: 161-172
  48. Smith, V.H. 1982. The nitrogen and phosphorus dependence of algal biomass in lakes: An empirical and theoretical analysis. Limnol. Oceanogr. 27: 1101-1112
  49. Sunda, W.G. and S.A. Huntsman. 1995. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 50: 189-206
  50. Takamura, N., T. Hanazato, T. Iwakuma, Y. Nojiri, A. Otsuki and M. Aizaki. 1998. Long-term Monitoring of Nutrients, Plankton and Benthos in Lake Kasumigaura. In: Iwakuma T. (Ed.) Long-term ecological research in the east Asia-pacific region: biodiversity and conservation of terrestrial and freshwater ecosystems. Center for Global Environmental Research, Tsukuba, Japan, pp.155-165
  51. Takeda, S. and H. Obata. 1995. Response of equatorial Pacific phytoplankton to subnanomolar Fe enrichment. Mar. Chem. 50: 219-227
  52. Takeda, S., A. Kamatani and K. Kawanobe. 1995. Effects of nitrogen and iron enrichments on phytoplankton communities in the northwestern Indian Ocean. Mar. Chem. 50: 229-241
  53. Tezuka, Y. 1985. Rainfall as a factor regulating the appearance of Anabaena Bloom in the South Basin of Lake Biwa. Jpn. J. Limnol. 46: 8-14
  54. Van Dork, E. 1982. Factors influencing phytoplankton growth and succession in Lake Maarsseveen (I) Ph.D. Thesis. University of Arsterdam
  55. Weinsberg, E.D. 1989. Cellular regulation of iron assimilation. Quart. Rev. Biol. 64: 261-290
  56. Wetzel, R.G. 1983. A comparative study of the primary productivity of higher aquatic plants, periphyton and phytoplankton in a saline lake. Ph D. Diss. Univ. California. Davis
  57. Zeitler, E.R., R.J. Olson, B.J. Binder, S.W. Chisholm, S.E. Fitzwater and R.M. Gordon. 1996. Iron-enrichment bottle experiments in equatorial Pacific: responses of individual phytoplankton cells. Deep-Sea Res. II 43: 1017-1029