Abstract
In this paper, we analytically examine the voltage transfer function dependent on input conditions for an N-Input NAND Gate. The logic threshold voltage, defined as a voltage at which the input and the output voltage become equal, changes as the input condition changes for a static NAND Gate. The logic threshold voltage has the highest value when all the N-inputs undergo transitions and it has the lowest value when only the last input connected to the last NMOS to ground, makes a transition. This logic threshold voltage difference increases as the number of inputs increases. Therefore, in order to provide a near symmetric voltage transfer function, a multistage N-Input Gate consisting of 2-Input Logic Gates is desirable over a conventional N-Input Gate.