DOI QR코드

DOI QR Code

Effects of Spent Composts of Se-Enriched Mushrooms on Carcass Characteristics, Plasma GSH-Px Activity, and Se Deposition in Finishing Hanwoo Steers

셀레늄급원으로 셀레늄강화버섯 폐배지의 급여가 거세한우의 도체특성, 혈중 GSH-Px활성 및 조직내 셀레늄축적에 미치는 영향

  • Lee, S.H. (Department of Animal Science, Korea National Agricultural College, RDA) ;
  • Park, B.Y. (National Livestock Research Institute, RDA) ;
  • Kim, W.Y. (Department of Animal Science, Korea National Agricultural College, RDA)
  • Published : 2004.10.31

Abstract

This study was conducted to determine effects of spent composts of Se-enriched mushrooms (Se-SMC) as the dietary selenium source on carcass characteristics, plasma glutathione peroxidase(GSH-Px) activity and Se deposition in finishing Hanwoo steers. In combination with both Se-SMC and normal SMC, experimental treatment diets were formulated to contain 0.1, 0.3, 0.6 and 0.9 ppm of Se on a dry matter basis. A total of 20 finishing Hanwoo steers (average BW = 613 kg, average age = 20 to 24 mo) were allotted to treatments in four groups of five steers per pen for 12 wk preceding slaughter. While the experiment is employed, blood samples were taken to analyze Se concentration and GSH-Px activity, and muscle and liver samples were collected for analyses of Se contents in their tissues after slaughter. DMl and BW gain were not affected by dietary Se level and any toxic symptoms in treatments with a higher level of Se were not observed. No differences were noted for carcass characteristics. Se concentration in whole blood and plasma GSH-Px activity were linearly increased with the increasing level of dietary Se (P < 0.01). Se content in the hind leg for Se-SMC supplemented groups significantly increased (P < 0.05) upon dietary Se level, with 0.27, 0.37, 0.40 and 0.46 !1g1g dry, respectively. However, Se content in the loin was not affected by dietary Se levels. Se content in the liver was significantly increased(P < 0.05) as dietary Se increased, with 0.79, 1.40, 2.39 and 3.10 !1g1g dry, respectively. These results suggested that Se in the Se-SMC was highly bioavailable, and Se-SMC might be used not only as an inexpensive way of providing Se for ruminants but also as another way of producing Se-fortified beef.

본 연구는 셀레늄급원으로 셀레늄강화버섯 폐배지(Se-SMC)를 거세한우에 급여하였을 때, 도체특성, 혈중 GSH-Px활성 및 조직내 셀레늄축적에 미치는 영향을 조사하기 위하여 실시하였다. 본 실험에 사용된 셀레늄급원은 유기셀레늄강화버섯을 생산한 후 폐기되는 버섯폐배지를 활용하였으며, 일반폐배지(SMC)를 조합하여 실험사료의 셀레늄 농도를 0.1, 0.3, 0.6, 0.9 ppm(건물기준)의 4처리구로 설정하였다. 실험동물은 비육후기 거세한우 20두(평균체중 613 kg, 20 ${\sim}$ 24개월령)를 공시하여, 처리구간 5두씩 배치하여 실험사료를 12주간 급여하였다. 실험기간 중 채혈하여 혈중 셀레늄농도와 혈장내 GSH-Px활성을 측정하였고, 근육(등심, 후지)과 간내 셀레늄함량과 도체특성을 측정하기위해 시험 후 도축하였다. Se-SMC의 보충으로 증가된 셀레늄수즌은 건물섭취량과 증체량에 영향을 미치지 않았고, 높은 농도의 처리군에서 중독증상은 발견되지 않았다. 도체특성 또한 처리구별 유의적인 차이를 나타내지 않았다. 혈중 셀레늄농도와 혈장내 GSH-Px활성은 Se-SMC 급여수준이 증가함에 따라 직선적으로 유의하게 증가하였다(P<0.01). 근육과 간내 셀레늄함량은 후지 및 간에서 사료중 셀레늄함량이 증가함에 따라 각각 건물 g당 0.27, 0.37, 0.40, 0.46$\mu$g 및 0.79, 1.40, 2.39, 3.10 $\mu$g를 나타내어 유의하게 증가하였다(P<0.05). 하지만, 등심내 셀레늄함량은 처리구간 유의적인 차이를 보이지 않았다. 이상과 같이 Se-SMC에 존재하는 셀레늄은 비육후기 거세한우에서 혈중 셀레늄농도와 GSH-Px활성을 유의하게 증가시킬 뿐만 아니라, 조직내 셀레늄함량을 증가시켜 저렴한 생산비로 셀레늄강화 쇠고기의 생산이 가능할 것으로 판단된다.

Keywords

References

  1. AOAC. 1995. Official Methods of Analysis. 16th ed. Association of Official Analytical Chemists, Washington, DC.
  2. Clark, L. C, Combs, Jr., G. F, Turnbull, B. W., Slate, E. H., Chalker, D. K., Chow, J., Davis, L. S., Glover, R. A., Graham, G. F., Gross, E. G., Krongrad, A., Lesher, Jr. J. L., Park, H. K., Sanders, Jr. B. B., Smith, C. L. and Taylor, J. R. 1996. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. JAMA (J. Am. Med. Assoc.) 276:1957-1963. https://doi.org/10.1001/jama.276.24.1957
  3. Combs, G. F. and Combs, S. B. 1986. The role of selenium in Nutrition. Academic Press. Inc., New York, NY.
  4. Devore, V. R. and Greene, B. E. 1982. Glutathione peroxidase in post-rigor bovine semitendinosus muscle. J. Food Sci. 47:1406-1409. https://doi.org/10.1111/j.1365-2621.1982.tb04949.x
  5. Gunter, S. A., Beck, P. A. and Phillips, J. M. 2003. Effects of supplementary selenium source on the performance and blood measurements in beef cows and their calves. J. Anim. Sci. 81: 856-864. https://doi.org/10.2527/2003.814856x
  6. Hintze, K. J., Lardy, G. P., Marchello, M. J. and Finley, J. W. 2001. Areas with high concentrations of selenium in the soil and forage produce beef with enhanced concentrations of selenium. J. Agric. Food Chem. 49:1062-1067. https://doi.org/10.1021/jf000699s
  7. Hintze, K.J., Lardy, G. P., Marchello, M. J. and Finley, J. W. 2002. Selenium accumulation in beef: Effect of dietary selenium and geographical area of animal origin. J. Agric. Food Chem. 50: 3938-3942. https://doi.org/10.1021/jf011200c
  8. Holben, D. H. and Smith, A. M. 1999. The diverse role of selenium within selenoproteins: a review. J. Am. Diet. Assoc. 99:836-843.
  9. Kim, Y. Y. and Mahan, D. C. 2001. Comparative effects of high dietary levels of organic and inorganic selenium on selenium toxicity of growingfinishing pigs. J. Anim. Sci. 79:942-948. https://doi.org/10.2527/2001.794942x
  10. Koenig, K. M., Rode, L. M., Cohen, R. D. H. and Buckley, W. T. 1997. Effects of diet and chemical form of selenium on selenium metabolism in sheep. J. Anim. Sci. 75:817-827. https://doi.org/10.2527/1997.753817x
  11. Ku, P. K., Miller, E. R., Wahlstrom, R. C, Groce, A. W., Hitchcock, J. P. and Ullrey, D. E. 1973. Selenium supplementation of naturally high selenium diets for swine. J. Anim. Sci. 37:501-505. https://doi.org/10.2527/jas1973.372501x
  12. Lawler, T. L., Taylor, J. B., Finley, J. W. and Caton, J. S. 2004. Effect of supranutritional and organically bound selenium on performance, carcass characteristics, and selenium distribution in finishing beef steers. J. Anim. Sci. 82:1488-1493. https://doi.org/10.2527/2004.8251488x
  13. Lawrence, R. A. and Burk, R. F. 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem. Biophys. Res. Commun. 71:952-958. https://doi.org/10.1016/0006-291X(76)90747-6
  14. Lee, S. H. 2004. Studies on the production of the Se-enriched mushroom and determination of its selenium profile. In: Studies on the production of Se-fortified beef by supplementing spent composts of Se-enriched mushrooms in the finishing Hanwoo steer. Ph.D. dissertation, Konkuk Univ., Seoul, Korea
  15. McConnell, K. P. and Hoffman, J. L. 1972. Methionine-selenomethionine parallels in rat liver polypeptide chain synthesis. Fed. Proc. 31:691 (Abstr.).
  16. Ministry of Agriculture & Forestry (MAF) and National Livestock Research Institute (NLRl). 2002. Korean feeding standard for Korean cattle (Hanwoo), Korea
  17. Mahan, D. C., Cline, T. R. and Richert, B. 1999. Effects of dietary levels of selenium-enriched yeast and sodium selenite as selenium sources fed to growing-finishing pigs on performance, tissue selenium, serum glutathione peroxidase activity, carcass characteristics, and loin quality. J. Anim. Sci. 77:2172-2179.
  18. Mahan, D. C. and Parrett, N. A. 1996. Evaluating the efficacy of selenium-enriched yeast and sodium selenite on tissue selenium retention and serum glutathione peroxidase activity in grower and fmisher swine. J. Anim. Sci. 74:2967-2974. https://doi.org/10.2527/1996.74122967x
  19. NRC. 1996. Nutrient requirements of beef cattle. 7th revised edition. National Academy Press, Washington, DC.
  20. Ortman, K. and Pehrson, B. 1999. Effect of selenate as a feed supplement to dairy cows in comparison to selenite and selenium yeast. J. Anim. Sci. 77:3365-3370.
  21. Peterson, P. J. and Spedding, D. J. 1963. The excretion by sheep of 75selenium incorporated into red clover (Trifolium pratense L.): The chemical nature of the excreted selenium and its uptake by three plant species. N. Z. J. Agric. Res. 6:13-23. https://doi.org/10.1080/00288233.1963.10419316
  22. PuIs, R 1989. Mineral levels in animal health: Diagnostic data Sherpa Int., Clearbrook, British Columbia, Canada.
  23. Rayman, M. P. 2000. The importance of selenium to human health. The Lancet 356:233-241. https://doi.org/10.1016/S0140-6736(00)02490-9
  24. Rock, M. J., Kincaid, R. L. and Carstens, G. E. 2001. Effects of prenatal source and level of dietary selenium on passive immunity and thermometabolism of newborn lambs. Small Rurnin. Res. 40:129-138. https://doi.org/10.1016/S0921-4488(01)00167-5
  25. Rotruck, J. T., Pope, A. L., Ganther, H. E., Hafeman, D. G., Swanson, A. B. and Hoekstra, W. G. 1973. Selenium: Biochemical role as a component of glutathione peroxidase. Science 179: 588-590.
  26. SAS. 2000. $SAS/STA^{circledR}$ User's guide (Release 8.1 ed.). Statistics, SAS Inst, Inc., Cary, NC.
  27. Smith, K. L., Hogan, J. S. and Conrad, H. R. 1988. Selenium in dairy cattle: Its role in disease resistance. Vet. Med. 83:72-78.
  28. Steel, R. G. D. and Tome, J. H. 1980. Principles and procedures of statistics: A biometrical approach (2nd Ed.). McGraw-Hili Book Co., New York
  29. Stefanka, Z., Ipolyi, I., Dernovics, M. and Fodor, P. 2001. Comparison of sample preparation methods based on proteolytic enzymatic processes for Se-speciation of edible mushroom (Agaricus bisporus) samples. Talanta 55:437-447.
  30. Stevens, J. B., Olson, W. G., Kraemer, R. and Archambeau, J. 1985. Serum selenium concentrations and glutathione peroxidase activity in cattle grazing forages of various selenium concentrations. Am. J. Vet. Res. 46:1556-1560.
  31. Stijve, T. 1977. Selenium content of mushrooms. Z. Lebensm. Unters. Forsch. 164(3):201-203.
  32. Surai, P. F. 2000. Organic selenium and the egg: Lessons from Nature. Feed Compounder 20:16
  33. Tapiero, H., Townsend, D. M. and Tew, K. D. 2003. The antioxidant role of selenium and seleno-compounds. Biomed. Pharmacother. 57: 134-144. https://doi.org/10.1016/S0753-3322(03)00035-0
  34. Van Elteren, J. T., Woroniecka, U. D. and Kroon, K. J. 1998. Accumulation and distribution of selenium and cesium in the cultivated mushroom agaricus bisporus - A radiotracer - aided study. Chemosphere 36(8):1787-1798. https://doi.org/10.1016/S0045-6535(97)10064-9
  35. Van Ryssen, J. B. J., Deagen, J. T., Beilstein, M. A. and Whanger, P. D. 1989. Comparative metabolism of organic and inorganic selenium by sheep. J. Agric. Food Chem. 37:1358-1363. https://doi.org/10.1021/jf00089a033
  36. Van Soest, P. J., Robertson, J. B. and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  37. Wright, P. L. and Bell, M. C. 1966. Comparative metabolism of selenium and tellurium in sheep and swine. Am. J. Physiol. 211:6-10.

Cited by

  1. Effect of Selenium Supplementation on Beef Color Stability vol.29, pp.5, 2009, https://doi.org/10.5851/kosfa.2009.29.5.627
  2. Influences of Feeding Seleniferous Whole Crop Barley on Growth Performance, Blood and Carcass Characteristics, and Tissue Selenium Deposition in Finishing Barrows vol.32, pp.6, 2012, https://doi.org/10.5851/kosfa.2012.32.6.828
  3. Effect of Seleniferous Whole Crop Barley Silage on Growth Performance, Blood and Carcass Characteristics, and Tissue Selenium Deposition in Finishing Hanwoo Steers vol.33, pp.4, 2013, https://doi.org/10.5333/KGFS.2013.33.4.281