Development of the Risk Evaluation Model for Rear End Collision on the Basis of Microscopic Driving Behaviors

미시적 주행행태를 반영한 후미추돌위험 평가모형 개발

  • 정성봉 (서울대학교 지구환경시스템공학부) ;
  • 송기한 (서울대학교 지구환경시스템공학부) ;
  • 박창호 (서울대학교 지구환경시스템공학부) ;
  • 전경수 (서울대학교 지구환경시스템공학부) ;
  • 고승영 (서울대학교 지구환경시스템공학부)
  • Published : 2004.01.01

Abstract

A model and a measure which can evaluate the risk of rear end collision are developed. Most traffic accidents involve multiple causes such as the human factor, the vehicle factor, and the highway element at any given time. Thus, these factors should be considered in analyzing the risk of an accident and in developing safety models. Although most risky situations and accidents on the roads result from the poor response of a driver to various stimuli, many researchers have modeled the risk or accident by analyzing only the stimuli without considering the response of a driver. Hence, the reliabilities of those models turned out to be low. Thus in developing the model behaviors of a driver, such as reaction time and deceleration rate, are considered. In the past, most studies tried to analyze the relationships between a risk and an accident directly but they, due to the difficulty of finding out the directional relationships between these factors, developed a model by considering these factors, developed a model by considering indirect factors such as volume, speed, etc. However, if the relationships between risk and accidents are looked into in detail, it can be seen that they are linked by the behaviors of a driver, and depending on drivers the risk as it is on the road-vehicle system may be ignored or call drivers' attention. Therefore, an accident depends on how a driver handles risk, so that the more related risk to and accident occurrence is not the risk itself but the risk responded by a driver. Thus, in this study, the behaviors of a driver are considered in the model and to reflect these behaviors three concepts related to accidents are introduced. And safe stopping distance and accident occurrence probability were used for better understanding and for more reliable modeling of the risk. The index which can represent the risk is also developed based on measures used in evaluating noise level, and for the risk comparison between various situations, the equivalent risk level, considering the intensity and duration time, is developed by means of the weighted average. Validation is performed with field surveys on the expressway of Seoul, and the test vehicle was made to collect the traffic flow data, such as deceleration rate, speed and spacing. Based on this data, the risk by section, lane and traffic flow conditions are evaluated and compared with the accident data and traffic conditions. The evaluated risk level corresponds closely to the patterns of actual traffic conditions and counts of accident. The model and the method developed in this study can be applied to various fields, such as safety test of traffic flow, establishment of operation & management strategy for reliable traffic flow, and the safety test for the control algorithm in the advanced safety vehicles and many others.

안전측면에서 교통류를 효율적으로 운영${\cdot}$관리하기 위해서는 교통류의 위험정도를 명확하게 판단할 수 있는 기준 및 모형개발이 필요하다. 이를 위해, 본 연구에서는 불완전한 추종으로 인해 발생할 수 있는 교통류 위험을 후미추돌위험의 관점에서 파악하였다. 과거 사고 예측 및 도로위험도 평가모형의 경우 운전자 반응을 고려하지 않았기 때문에, 모형의 신뢰성에 다소 문제가 있는 것으로 나타났다. 본 연구에서는 이러한 한계 및 문제점을 극복하기 위해 사고발생 가능성이라는 개념을 도입함으로써 위험과 사고 사이에 존재하는 운전자 반응을 모형에 반영하였다. 즉, 추종이론 및 안정성 이론을 바탕으로 후미추돌과 관련된 미시적 변수 즉, 운전자의 반응시간과 감속도를 반영하여 운전자를 고려한 모형을 개발하였다. 위험도를 대표할 수 있는 지표 개발을 위해 소음영향평가에서 사용되는 척도를 활용하였으며, 상대적인 위험도 우위를 평가하기 위해 위험강도 및 지속시간을 고려한 ‘등가위험도’를 개발하였다. 서울시 도시고속도로를 대상으로 직접 실험${\cdot}$조사를 수행하였으며, 미시적 교통류 자료수집을 위해 직접 실험차량을 제작하였다. 수집된 자료를 바탕으로 구간별, 차로별, 교통상황별 위험도를 도출하였다. 모형에 의해 도출된 위험도를 해당구간에서 수집된 차로별 사고자료와 비교하여 본 결과, 교통상황 및 사고자료 패턴과 일치하는 결과를 보여주었다. 본 연구에서 개발된 모형은 안전진단 및 도로설계에서부터 첨단안전차량 제어알고리즘의 안전성평가에 이르기가지 다양한 분야에서 활용될 수 있다.

Keywords

References

  1. 도철웅(1996), ‘교통공학원론’, 청문각
  2. 엄광태. 이영인(2002), '미시적 시뮬레이터를 이용한 도로 안전성 평가', 대한교통학회 추계학술대회
  3. 정성봉(2003), '미시적 주행특성을 반영한 교통류 위험도 평가기법개발', 서울대학교 박사학위논문
  4. 정준화(2001), ‘주행속도를 이용한 도로의 평면선형안전성 평가모형개발’, 서울대학교 박사학위논문
  5. Ali Touran, Mark A. Brackstone and Mike McDonald(1999), 'A collision model for safety evaluation of autonomous intelligent cruise control', Accident Analysis and Prevention, 31, Pergamon, pp.567 -78 https://doi.org/10.1016/S0001-4575(99)00013-5
  6. Drew, D. R.(1968), 'Traffic Flow Theory and Control', McGraw-Hill Inc., pp.330-387
  7. Ferrari, P.(1989), 'The Effect Of Driver Behavior On Motorway Reliability', Trans-portation Res.-B, Vol.23B, No.2, pp. 139-150
  8. Ferrari. P.(1994), 'The Instability Of Motorway Traffic', Transprtation Research Board, Vol.28B, pp.175-186
  9. Gazis, D. C., R. Herman and Weiss, G. H.(1962), 'Density Oscillations Between Lanes of a Multilane Highway,' Operations Research, Vol.10, pp.658-667 https://doi.org/10.1287/opre.10.5.658
  10. Herman, R., Elliott W. Montroll, Renfrey B. Potts, and Richard W. Rothery(1959), 'Traffic Dynamics : Analysis of Stability In Car Following', Operations Research, Vol.7, pp.86-106 https://doi.org/10.1287/opre.7.1.86
  11. Herman, R. and Richard W. Rothery(1967), 'Propagation of Disturbances in Vehicular Platoons', Proceedings of the 3th international symposium on the theory of traffic flow, NewYork, pp.14-25
  12. Herman, R. and Tenny-Lam(1974), 'Stability of Vehicle Platoons.', Proceedings of the 6th international symposium on the theory of traffic flow, pp.39-56
  13. Kononov J., Allery B.(2003), 'Level of Service of Safety : A Conceptual Blueprint and the Analytical Framework', Transportation Re-search Board Annual Meeting, Jan 2003
  14. Stollnitz, E. J., T. D. DeRose and D. H. Salesin(1995a), 'Wavelets for Computer Graphics: A Primer, Part 1.', IEEE Computer Graphics and Applications, Vol.15, No.3, pp.75-85
  15. Stollnitz, E. J., T. D. DeRose and D. H. Salesin(1995b), 'Wavelets for Computer Graphics: A Primer, Part 2.', IEEE Computer Graphics and Applications, Vol.15, No.4, pp.75-85 https://doi.org/10.1109/38.391497
  16. Triggs, T. J. and W. G. Harris(1982), 'Reaction Time Of Drivers To Road Stimuli', Human Factors Report, No.HFR-12, Australia
  17. Xiaoyan Zhang and David f. Jarrett(1997), 'Stability Analysis Of the classical car-following model', Transportation Research-B, Vol.31, No.6, pp.441-462 https://doi.org/10.1016/S0191-2615(97)00006-4