• Title/Summary/Keyword: 후미추돌위험

Search Result 5, Processing Time 0.019 seconds

Development of Signalized-Intersection LOS Determination Method Based on Satefy (교통안전에 의한 신호교차로 서비스수준 결정방법의 개발)

  • 하태준
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.4
    • /
    • pp.155-178
    • /
    • 1996
  • 신호교차로 서비스수준은, 객관적으로 측정 할 수 있는 여러 가지 기준에 의해 결정될 수 있다. 예를 들면, 지체시간(Delay), 교통사고수(Number of Accident), 교통사고율(Accident Rate), 충돌수(Traffic Conflict), 그리고 교통사고에 노출된 차량수(Exposure)등이다. 지금까지는 1985 Highway Capacity Manual(HCM)에서 소개된 지체시간에 의한 서비스수준 결정방법이 널리 사용되어 왔다. 본 논문에서는 1985 HCM 방법의 중용성과 유용성에 대해 논하지 않고, 교통안전(Safety)에 의한 신호교차로 서비스수준 결정방법을 제시하였다. 교차로의 위험도(Degree of Intersection Hazard)를 예측하기 위해, 교통사고빈도 수가 가장 높은 두가지 교통사고 유형, 즉 좌회전추돌(Left-Tum)과 후미추돌(Rear-End) 예측 모형이 개발되었다. 여기서 첫째, 좌회전추돌 위험도를 예측하기 위하여 음지수 분포(Negative-Exponential Distribution)를 이용한 확률적 모형이 개발되었다. 둘째, 후미추돌 위험도를 예측하기 위하여 연속류 모형(Continuum Model)을 이용한 거시적 모형이 개발되었다. 개발된 두가지 모형을 이용하여 신호교차로 안전도를 예측하였으며 교차로 서비스수준이 안전도에 의해 결정되었다. 본 논문에서 제시된 교통안전에 의한 신호교차로 서비스수준 결정방법은 연동교차로를 제외한 독립교차로에만 적용이 된다.

  • PDF

Development of the Risk Evaluation Model for Rear End Collision on the Basis of Microscopic Driving Behaviors (미시적 주행행태를 반영한 후미추돌위험 평가모형 개발)

  • Chung, Sung-Bong;Song, Ki-Han;Park, Chang-Ho;Chon, Kyung-Soo;Kho, Seung-Young
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.6
    • /
    • pp.133-144
    • /
    • 2004
  • A model and a measure which can evaluate the risk of rear end collision are developed. Most traffic accidents involve multiple causes such as the human factor, the vehicle factor, and the highway element at any given time. Thus, these factors should be considered in analyzing the risk of an accident and in developing safety models. Although most risky situations and accidents on the roads result from the poor response of a driver to various stimuli, many researchers have modeled the risk or accident by analyzing only the stimuli without considering the response of a driver. Hence, the reliabilities of those models turned out to be low. Thus in developing the model behaviors of a driver, such as reaction time and deceleration rate, are considered. In the past, most studies tried to analyze the relationships between a risk and an accident directly but they, due to the difficulty of finding out the directional relationships between these factors, developed a model by considering these factors, developed a model by considering indirect factors such as volume, speed, etc. However, if the relationships between risk and accidents are looked into in detail, it can be seen that they are linked by the behaviors of a driver, and depending on drivers the risk as it is on the road-vehicle system may be ignored or call drivers' attention. Therefore, an accident depends on how a driver handles risk, so that the more related risk to and accident occurrence is not the risk itself but the risk responded by a driver. Thus, in this study, the behaviors of a driver are considered in the model and to reflect these behaviors three concepts related to accidents are introduced. And safe stopping distance and accident occurrence probability were used for better understanding and for more reliable modeling of the risk. The index which can represent the risk is also developed based on measures used in evaluating noise level, and for the risk comparison between various situations, the equivalent risk level, considering the intensity and duration time, is developed by means of the weighted average. Validation is performed with field surveys on the expressway of Seoul, and the test vehicle was made to collect the traffic flow data, such as deceleration rate, speed and spacing. Based on this data, the risk by section, lane and traffic flow conditions are evaluated and compared with the accident data and traffic conditions. The evaluated risk level corresponds closely to the patterns of actual traffic conditions and counts of accident. The model and the method developed in this study can be applied to various fields, such as safety test of traffic flow, establishment of operation & management strategy for reliable traffic flow, and the safety test for the control algorithm in the advanced safety vehicles and many others.

Analysis of Rear-end Collision Risks Using Weigh-in-Motion Data (고속도로 Weigh-in-Motion(WIM) 이벤트 자료를 활용한 후미추돌 위험도 분석 기법)

  • Oh, Min Soo;Park, Hyeon Jin;Oh, Cheol;Park, Soon Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.2
    • /
    • pp.152-167
    • /
    • 2018
  • The high-speed weigh-in-motion system can collect the traveling speed and load information of individual vehicles, which can be used in a variety of ways for the traffic surveillance. However, it has a limit to apply the high-speed weigh-in-motion data directly to a safety analysis because high-speed weigh-in-motion's raw data are point measured data. In order to overcome this problem, this paper proposes a method to calculate the conflict rate and the Impulse severity based on surrogate safety measures derived from the detection time, detection speed, vehicle length, vehicle type, vehicle weight. It will be possible to analyze and evaluate the risk of rear-end collision on freeway traffic. In addition, this study is expected to be used as a fundamental for identifying crash risks and developing policies to enhance traffic safety on freeways.

Methodology for Evaluating Real-time Rear-end Collision Risks based on Vehicle Trajectory Data Extracted from Video Image Tracking (영상기반 실시간 후미추돌 위험도 분석기법 개발)

  • O, Cheol;Jo, Jeong-Il;Kim, Jun-Hyeong;O, Ju-Taek
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.5
    • /
    • pp.173-182
    • /
    • 2007
  • An innovative feature of this study is to propose a methodology for evaluating safety performance in real time based on vehicle trajectory data extracted from video images. The essence of evaluating safety performance is to capture unsafe car-following events between individual vehicles traveling surveillance area. The proposed methodology applied two indices including real-time safety index (RSI) based on the concept of safe stopping distance and time-to-collision (TTC) to the evaluation of safety performance. It is believed that outcomes would be greatly utilized in developing a new generation of video images processing (VIP) based traffic detection systems capable of producing safety performance measurements. Relevant technical challenges for such detection systems are also discussed.

Development and Evaluation of Traffic Conflict Criteria at an intersection (교차로 교통상충기준 개발 및 평가에 관한 연구)

  • 하태준;박형규;박제진;박찬모
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.2
    • /
    • pp.105-115
    • /
    • 2002
  • For many rears, traffic accident statistics are the most direct measure of safety for a signalized intersection. However it takes more than 2 or 3 yearn to collect certain accident data for adequate sample sizes. And the accident data itself is unreliable because of the difference between accident data recorded and accident that is actually occurred. Therefore, it is rather difficult to evaluate safety for a intersection by using accident data. For these reasons, traffic conflict technique(TCT) was developed as a buick and accurate counter-measure of safety for a intersection. However, the collected conflict data is not always reliable because there is absence of clear criteria for conflict. This study developed objective and accurate conflict criteria, which is shown below based on traffic engineering theory. Frist, the rear-end conflict is regarded, when the following vehicle takes evasive maneuver against the first vehicle within a certain distance, according to car-following theory. Second, lane-change conflict is regarded when the following vehicle takes evasive maneuver against first vehicle which is changing its lane within the minimum stopping distance of the following vehicle. Third, cross and opposing-left turn conflicts are regarded when the vehicle which receives green sign takes evasive maneuver against the vehicle which lost its right-of-way crossing a intersection. As a result of correlation analysis between conflict and accident, it is verified that the suggested conflict criteria in this study ave applicable. And it is proven that estimating safety evaluation for a intersection with conflict data is possible, according to the regression analysis preformed between accident and conflict, EPDO accident and conflict. Adopting the conflict criteria suggested in this study would be both quick and accurate method for diagnosing safety and operational deficiencies and for evaluation improvements at intersections. Further research is required to refine the suggested conflict criteria to extend its application. In addition, it is necessary to develope other types of conflict criteria, not included in this study, in later study.