DOI QR코드

DOI QR Code

Experimental Study on Subjective Sound Quality Evaluation of Vehicle Noises

승용차소음의 주관적 음질평가 실험연구


Abstract

This study is directed toward determining the number and characteristics of psychologically meaningful perceptual dimensions required for assessing the sound quality with respect to vehicle noises, and toward identifying the acoustical and/or psychoacoustical bases underlying the preference and similarity judgments. For the purpose of analyzing the paired comparison data produced by subjective ratings we used nonmetric multidimensional scaling(MDS). The perceptual dimensions based upon preference ratings could explain 76.3 % of the variance by maximum dB(A) and sharpness acum. The correlation between objective and subjective positions of the stimuli is $R^2$=0.97(F(1,13)=195.45, p < .01), corrected $R^2$=0.93. The less the intensity of the stimulus the more becomes the subjective Position would be over-estimated relative to the objective one. The same is valid for the opposite case. The perceptual dimensions based upon similarity judgments could be accounted for 47.8 % and 23.5% of the variance, each of which might be a match for the maximum dB(A) and the sharpness acum, respectively. The correlation between objective and subjective positions of the stimuli is $R^2$=0.94(F(1,13)=92.38, p < .01), corrected $R^2$=0.87. The more the intensity of the stimulus the more becomes the subjective position would be over-estimated relative to the objective one. The same is valid for the opposite case. In other words, it is likely that the larger the amount of two stimuli which to compare would be judged similar. So far it should be further clarified that whether the relationship between preference ratings and psychological distances nay be optimized through which psycho-physical models.

Keywords

References

  1. Ahrens, H. J., 1974, Multidimensionale Skalierung: Methodik, Theorie und Empirische Gultigkeit mit Anwendungen aus der Differentiellen Psychologie und Sozialpsychologie. Wemheim: Beltz
  2. Anderson, N. H., 1973, Algebraic Models in Perception, In Carterette, E. C. and Friedman, M. P. (Eds.). Handbook of Perception. New York: Academic Press
  3. Anderson, N. H., 1973. Cognition Algebra: Integration Theory Applied to Social Attribution. In Berkowitz, L. (Ed.), Advances in Experimental Social Psychology. Vol.7. New York'. Academic Press
  4. Aures, W., 1985, Berechnungsverfahren fur den Sensorischen Wohlklang Beliebiger Schallsignale. Acustica 50, 130-141
  5. Bisping, R., 1994, Digital Generation of Acoustical Targets for Car Sound Engineehng Based on Psychometrical Data. Proceedings Internoise 94, Vol. 2, Japan, 869-876
  6. Bisping, R., 1997, Car Interior Sound Quality: Expehmental Analysis by Synthesis. Acustica, 83. 813-818
  7. Blauert, J. and Jekosch, U., 1997, Sound Quality Evaluation. A Multi-layered Problem. Acustica, Vol. 83, 747-753
  8. Bodden, M., 1997. Instrumentation for Sound Quality Evaluation. Acustica, 83, 775-783
  9. Borg, I., 1981, Anwendungsorientierte Multidimensionale Skalierung. Berlin: Springer
  10. Borg, I. and Staufenbilel, T., 1997. Theorien und Methoden der Skalierung: Eine Einfuhrung. Bern: Huber
  11. Carroll, J. D. and Chang, J. J., 1970, Analysis of Individual Differences in Multidimensional Scaling via an N-way Generalization of Eckart- Youngs Decomposition. Psychometrika, Vol.35, 283-319 https://doi.org/10.1007/BF02310791
  12. Choe, B.. 2000. A Nonmetiic Multidimensional Analysis of 15 Complex Sounds: a Comparison of Preferences and Similarities Evaluations. Reports from the Institute for Research into Man-Environment-Relations, No. 35. November 2000, Oldenburg
  13. Choe, B.. 2001, Nonmethc Multidimensional Scaling of Complex Sounds: Dimensions of Preference Ratings and Perceived Similarity of Vehide Noises. Shaker Verlag Aachen
  14. Hur. D. et al., 2000, Model Development and Analysis of the Car Interior Sound Quality. Transaction of the Korean Society for Noise and Vibration Engineering, Vol. 10, No.2, 254-260
  15. Jones, M. R. and MacCallum, R., 1987. An Application of Principal Directions Scaling to Auditory Pattern Perception, In F. W. Young and R. M. Hamer (eds.), Multidimensional Scaling: History, Theory, and Applications. 259-278. Hilsdale. NJ: Erlbaum
  16. Kruskal, J. B., 1964. Multidimensional Scaling by Optimizing Goodness of Fit to a Nonmetric Hypothesis. Psychometrika. 29. 1-27 https://doi.org/10.1007/BF02289565
  17. Kruskal, J. B.. 1964, Nonmethc Multidimensional Scaling: A Numerical Method. Psychomethka. 29. 115-129 https://doi.org/10.1007/BF02289694
  18. Lakatos. S., McAdams, S. and Chausse. R., 1997. The Representation of Auditory Source Characteristics: Simple Geometric form. Perception and Psychophysics. 59, 1180-1190 https://doi.org/10.3758/BF03214206
  19. McAdams, S. Susini, P.. Misdahis, N. and Winsberg, S.. 1998. Multidimensional Characterisation of Perceptual and Preference Judgments of Vehicle and Environmental Noises. Euro-Noise 98'. Designing for Silence, $M\ddot{u}nchen,$ 561-566
  20. Schick, A., 1992. Aktuelle Probleme der Schallwirkungsforschung. HNO. 40, Springer-Verlag, 37-40
  21. Schick, A.. 1994, Zur Geschichte der Bewertung von Innengerauschen in Personenwagen. Zeitschrift $f\ddot{u}r$ $L\ddot{a}rmbek\ddot{a}mpfung,$ Vol.41, 61-68
  22. Shepard, R. N., 1957, Stimulus and Response Generalization: A Stochastic Model for RelatingGeneralization to Distance in Psychological Space. Psychometrika. 22, 325-345 https://doi.org/10.1007/BF02288967
  23. Shepard, R. N.. 1966, Metric Structure in Ordinal Data. Journal of Mathematical Psychology, 3. 287-315 https://doi.org/10.1016/0022-2496(66)90017-4
  24. Susini, P.. McAdams. S. and Winsberg. S., 1997, Perceptual Characterization of Vehicle Noises. EEA Symposium: Psychoacoustic Industry and Universities. Janvier
  25. Torgerson. W. S., 1958, Theory and Methods of Scaling. New York: Wiley