초록
유한 필드, 즉 Galois 필드는 에러 정정 코드, 디지털 신호처리, 암호법(cryptography)와 같은 광범위한 응용 분야에 사용되고 있다. 이 응용들은 종종 GF(2/sup m/)에서 지수제곱 연산을 필요로 한다. 기존에 제안되었던 방법들은 지수제곱 연산을 반복, 순환적인 곱셈으로 구현하여 계산시간이 많이 걸리거나, 또는 구현 시 하드웨어 구조가 복잡하여 하드웨어 비용이 큰 경우가 많았다. 본 논문에서는 지수제곱 연산을 하는 효과적인 방법을 제안하고 이를 VHDL로 구현하였다. 이 회로는 지수의 각 비트에 해당하는 곱셈 항들을 계산하고 이 들을 곱함으로써 지수제곱 연산을 계산한다. 과거에는 이 알고리즘이 원시 다항식의 근의 지수제곱 연산을 계산하는 데 사용되는 것으로 국한되어 있었으나, 본 논문에서는 이 알고리즘을 GF(2/sup m/)의 임의의 원소의 지수제곱 연산으로 확장하였다.
Finite or Galois fields have been used in numerous applications such as error correcting codes, digital signal processing and cryptography. These applications often require exponetiation on GF(2$^{m}$ ) which is a very computationally intensive operation. Most of the existing methods implemented the exponetiation by iterative methods using repeated multiplications, which leads to much computational load, or needed much hardware cost because of their structural complexity in implementing. In this paper, we present an effective VLSI architecture for exponentiation on GF(2$^{m}$ ). This circuit computes the exponentiation by multiplying product terms, each of which corresponds to an exponent bit. Until now use of this type algorithm has been confined to a primitive element but we generalize it to any elements in GF(2$^{m}$ ).