$GF(2^m)$ 상에서의 효율적인 지수제곱 연산을 위한 VLSI Architecture 설계

Design of VLSI Architecture for Efficient Exponentiation on $GF(2^m)$

  • 한영모 (이화여자대학교 정보통신공학과)
  • 발행 : 2004.11.01

초록

유한 필드, 즉 Galois 필드는 에러 정정 코드, 디지털 신호처리, 암호법(cryptography)와 같은 광범위한 응용 분야에 사용되고 있다. 이 응용들은 종종 GF(2/sup m/)에서 지수제곱 연산을 필요로 한다. 기존에 제안되었던 방법들은 지수제곱 연산을 반복, 순환적인 곱셈으로 구현하여 계산시간이 많이 걸리거나, 또는 구현 시 하드웨어 구조가 복잡하여 하드웨어 비용이 큰 경우가 많았다. 본 논문에서는 지수제곱 연산을 하는 효과적인 방법을 제안하고 이를 VHDL로 구현하였다. 이 회로는 지수의 각 비트에 해당하는 곱셈 항들을 계산하고 이 들을 곱함으로써 지수제곱 연산을 계산한다. 과거에는 이 알고리즘이 원시 다항식의 근의 지수제곱 연산을 계산하는 데 사용되는 것으로 국한되어 있었으나, 본 논문에서는 이 알고리즘을 GF(2/sup m/)의 임의의 원소의 지수제곱 연산으로 확장하였다.

Finite or Galois fields have been used in numerous applications such as error correcting codes, digital signal processing and cryptography. These applications often require exponetiation on GF(2$^{m}$ ) which is a very computationally intensive operation. Most of the existing methods implemented the exponetiation by iterative methods using repeated multiplications, which leads to much computational load, or needed much hardware cost because of their structural complexity in implementing. In this paper, we present an effective VLSI architecture for exponentiation on GF(2$^{m}$ ). This circuit computes the exponentiation by multiplying product terms, each of which corresponds to an exponent bit. Until now use of this type algorithm has been confined to a primitive element but we generalize it to any elements in GF(2$^{m}$ ).

키워드

참고문헌

  1. Stephen B. and Wicker, Error Control Systems for Digital Communication and Storage, Pentice Hall, 1996
  2. D. E. Knuth, The Art of Computer Programming, Vol. 2, Seminumerical Algorithms. Readng, MA:Addisonp_Wesley, 1969
  3. P. A. Scott, S.J. Simmons, S. E. Tavares, and L. E. Peppard, Architectures for exponentiation in GF($2^m$), IEEE J. Select. Areas Commun., vol. 6, pp. 578-586, Apr. 1988 https://doi.org/10.1109/49.1927
  4. B. Fam and J. Kowalchuk, A VLSI device for fast exponentiation in finite fields, in Proc, IEEE Int. Conf. Circuits Comput., New York, Sept. 1982, pp. 368-371
  5. A. Ghafoor and A. Singh, Systolic architecture for finite finite field exponentiation, in Proc. IEEE, pt. E, Nov. 1989, vol. 136, pp. 465-470
  6. C. C. Wang and D. Pei, A VLSI design for computing exponetiations in GF($2^m$) and its application to generate pseudornadom number sequences, IEEE Trans Comput., vol. 39, pp.258-262, Feb. 1990 https://doi.org/10.1109/12.45211
  7. B. Arzi, Architectures for Exponentiation Over GF($2^n$) Adopted for Smatcard Application, IEEE Trans. Comput., vol. 42, pp.494-497, April 1993 https://doi.org/10.1109/12.214694
  8. Mario Kovac and N. Rangnathan, ACE: A VLSI Chip for Galois Field CF($2^m$) Based Exponentiation, IEEE Trans. Circuts and Systems., vol. 43, pp289-297, April 1996 https://doi.org/10.1109/82.488283
  9. C. L. Wang and J. L. Lin, A systolic architecture fo computing inverses and divisions in finite fields GF($$2^m), IEEE Trans. Comput., vol. 42, pp. 1141-1145, Sept. 1993 https://doi.org/10.1109/12.241603
  10. Sevastian T. J. Fenn, Mohammed Benaissa, and David Taylor, $GF(2^m)$ Multiplication and Division Over the Dual Basis, IEEE Trans. Comput., vol. 45, pp. 319-327, March 1996 https://doi.org/10.1109/12.485570
  11. M. Morii, M. Kasahara, and D. L. Whiting, Efficient Bit-Serial Multiplication and the Discerte-Time Wiener-Hopft Equation over Finite Fields, IEEE Trans. Information Theory, vol. 35, pp. 1,177-1,183, Nov. 1989 https://doi.org/10.1109/18.45274
  12. P. Andrew Scott, Stanley J. Simmons, Stafford E. Tavares, LLoyd E. Peppard, Architectures for Exponentiation in $GF(2^m)$, IEEE Trans. Selected Areas In Communications, vol. 6, no. 3, pp. 578-586, April 1988 https://doi.org/10.1109/49.1927