Compatibilization and Properties of Modified Starch-Poly(lactic acid) Blend

변성 전분-폴리락트산 블렌드의 상용성 및 물성

  • 이상환 (성균관대학교 응용화학부) ;
  • 김덕준 (성균관대학교 응용화학부) ;
  • 김지흥 (성균관대학교 응용화학부) ;
  • 이동현 (성균관대학교 응용화학부) ;
  • 심상준 (성균관대학교 응용화학부) ;
  • 남재도 (성균관대학교 응용화학부) ;
  • 계형산 (목원대학교 응용화학공학과) ;
  • 이영관 (성균관대학교 응용화학부)
  • Published : 2004.11.01

Abstract

Starch was grafted with maleic anhydride by melt process and then the grafted starch was blended with poly(lactic acid). The thermal properties of the poly(lactic acid), poly(lactic acid)/starch, and poly(lactic acid)/ modified starch were observed by DSC and TGA analysis. In the case of poly(lactic acid)/modified starch, an additional melting peak at 1$65^{\circ}C$ accompanying with 172$^{\circ}C$ assigned to pure poly(lactic acid) melting transition was clearly displayed in DSC analysis. Also, smooth decomposition pattern between starch and poly(lactic acid) was also monitored in poly(lactic acid)/modified starch blend by TGA analysis. The modulus of poly(lactic acid)/modified starch was 12% higher than that of poly(lactic acid)/starch. The thermal and mechanical characteristics of poly(lactic acid)/modified starch might be due to the enhanced compatibilization between each components, which was also observed in SEM analysis.

폴리락트산과 상용성을 높이기 위해 전분에 무수 말레산을 그래프팅한 변성 전분을 제조하여 폴리락트산과 혼합하였다. DSC와 TGA 열적거동에서 폴리락트산/변성 전분 혼합체는 폴리락트산에서 관찰되는 172$^{\circ}C$에서의 용융 피크 외에 1$65^{\circ}C$에서 새로운 용융 피크가 관찰되었으며, 열분해 곡선에서는 폴리락트산/변성 전분 혼합체의 분해 온도가 보다 완만하게 감소되는 것으로 나타났다. 또한 기계적 강도의 측정에서는 폴리락트산/변성 전분이 폴리락트산/전분 혼합체와 비교하여 탄성률이 약 12% 증가하였으며, 이는 SEM 이미지에서 나타난 바와 같이 폴리락트산과 변성 전분의 계면 접착력이 향상되었기 때문으로 사료된다.

Keywords

References

  1. W. K. Lee, G. H. Ryou, and C. S. Ha, Polym. Sci. Tech., (Korea) 13(1), 65 (2002)
  2. S. H. Park, Y.B. Kim, and D. S. Lee, Polymer(Korea), 24(4), 477 (2000)
  3. C. L. Jun, J. Polym. Environ., 8(1), 33 (2000) https://doi.org/10.1023/A:1010172112118
  4. R. Gattin, A. Copinet, C. Bertrand, and Y. Couturier J. Polym. Environ., 9(1), 11 (2002)
  5. T. Kasuga, H. Maeda, K. Kato, M. Nogami, K. Hata, and M. Ueda, Biomaterials, 24, 3247 (2003)
  6. C. S. Wu, Polym. Degrad. Stab., 80, 127 (2003)
  7. U. R. Vaidya, M. Bhattacharya, and D. Zhang, Polymer, 36(6), 1179 (1995)
  8. S. H. Lee and N. Shiraishi, J. Appl. Polym. Sci., 81, 243 (2000)
  9. G. G. Bumbu, C. Vasile, G. C. Chitanu, and A. Carpov, Polym. Degrad. Stab., 72, 99 (2001)
  10. D. Garlotta, J. Polym. Environ., 9(2), 63 (2002)
  11. H. R. Kricheldorf, Chemosphere, 43, 49 (2001)
  12. H. Roeper and H. Koch, Starch/Staerke, 42(4), 123 (1990)
  13. F. D. Innocenti, M. Tosin, and C. Bastioli, J. Environ. Polym. Degrad., 6, 197 (1998)
  14. A. I. Suvorova, I. S. Tjukova, and E. I. Trufanova, J. Environ. Polym. Degrad., 7, 35 (1999)
  15. O. B. Wurzburg (Ed), Modified Starches; Properties and Uses, CRC Press, Boca Raton, Florida, 1987
  16. J. Aburto, S. Thiebaud, I. Alric, E. Borredon, D. Bikiaris, J. Prinos, and C. Panayiotou, Carbohydrate Polymer, 34, 101 (1997)
  17. C. G. Cho, K. H. Lee, S. W. Woo, J. B. Choi, and S. S. Hwang, J. Ind. Eng. Chem., 8(5), 866 (1997)
  18. C. Li, Y. Zhang, and Y. Zhang, Polymer Testing, 22, 191 (2003)
  19. Z. Aimin and L. Chao, Eur. Polym. J., 39, 1291 (2003)
  20. G. M. O. Barra, J. S. Crespo, J. R. Bertoline, V. Soldi, and A. T. N. Pires, J. Brazilian Chem. Soc., 10(1), 31 (1999)
  21. J. C. Salamone (Ed.), Polymeric Materials Encyclopedia, CRC Press, Boca Raton, Vol 1554, 1996
  22. J. F. Zhang and X. Sun, Polym. Int., 53(6), 716 (2004)
  23. H. Morita, Anal. Chem., 28(1), 64. (1956)
  24. R. Chandra and R. Rustgi, Polym. Degrad. Stab., 56, 185 (1997)
  25. S. H. Kim, I. J. Chin, J. S. Yoon, K. H. Lee, M. N. Kim, and J. S. Jung, Polymer(Korea) 22(2), 335 (1998)
  26. H. Wang, X. Sun, and P. Seib, J. Appl. Polym. Sci., 82, 1761 (2001)