Browse > Article

Compatibilization and Properties of Modified Starch-Poly(lactic acid) Blend  

이상환 (성균관대학교 응용화학부)
김덕준 (성균관대학교 응용화학부)
김지흥 (성균관대학교 응용화학부)
이동현 (성균관대학교 응용화학부)
심상준 (성균관대학교 응용화학부)
남재도 (성균관대학교 응용화학부)
계형산 (목원대학교 응용화학공학과)
이영관 (성균관대학교 응용화학부)
Publication Information
Polymer(Korea) / v.28, no.6, 2004 , pp. 519-523 More about this Journal
Abstract
Starch was grafted with maleic anhydride by melt process and then the grafted starch was blended with poly(lactic acid). The thermal properties of the poly(lactic acid), poly(lactic acid)/starch, and poly(lactic acid)/ modified starch were observed by DSC and TGA analysis. In the case of poly(lactic acid)/modified starch, an additional melting peak at 1$65^{\circ}C$ accompanying with 172$^{\circ}C$ assigned to pure poly(lactic acid) melting transition was clearly displayed in DSC analysis. Also, smooth decomposition pattern between starch and poly(lactic acid) was also monitored in poly(lactic acid)/modified starch blend by TGA analysis. The modulus of poly(lactic acid)/modified starch was 12% higher than that of poly(lactic acid)/starch. The thermal and mechanical characteristics of poly(lactic acid)/modified starch might be due to the enhanced compatibilization between each components, which was also observed in SEM analysis.
Keywords
biodegradable polymer; maleic anhydride; modified starch; poly(lactic acid);
Citations & Related Records

Times Cited By Web Of Science : 6  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 R. Gattin, A. Copinet, C. Bertrand, and Y. Couturier J. Polym. Environ., 9(1), 11 (2002)
2 C. S. Wu, Polym. Degrad. Stab., 80, 127 (2003)
3 O. B. Wurzburg (Ed), Modified Starches; Properties and Uses, CRC Press, Boca Raton, Florida, 1987
4 G. M. O. Barra, J. S. Crespo, J. R. Bertoline, V. Soldi, and A. T. N. Pires, J. Brazilian Chem. Soc., 10(1), 31 (1999)
5 H. Morita, Anal. Chem., 28(1), 64. (1956)
6 S. H. Kim, I. J. Chin, J. S. Yoon, K. H. Lee, M. N. Kim, and J. S. Jung, Polymer(Korea) 22(2), 335 (1998)
7 H. Wang, X. Sun, and P. Seib, J. Appl. Polym. Sci., 82, 1761 (2001)
8 J. F. Zhang and X. Sun, Polym. Int., 53(6), 716 (2004)
9 T. Kasuga, H. Maeda, K. Kato, M. Nogami, K. Hata, and M. Ueda, Biomaterials, 24, 3247 (2003)
10 W. K. Lee, G. H. Ryou, and C. S. Ha, Polym. Sci. Tech., (Korea) 13(1), 65 (2002)
11 H. Roeper and H. Koch, Starch/Staerke, 42(4), 123 (1990)
12 F. D. Innocenti, M. Tosin, and C. Bastioli, J. Environ. Polym. Degrad., 6, 197 (1998)
13 J. Aburto, S. Thiebaud, I. Alric, E. Borredon, D. Bikiaris, J. Prinos, and C. Panayiotou, Carbohydrate Polymer, 34, 101 (1997)
14 C. L. Jun, J. Polym. Environ., 8(1), 33 (2000)   DOI   ScienceOn
15 A. I. Suvorova, I. S. Tjukova, and E. I. Trufanova, J. Environ. Polym. Degrad., 7, 35 (1999)
16 C. Li, Y. Zhang, and Y. Zhang, Polymer Testing, 22, 191 (2003)
17 U. R. Vaidya, M. Bhattacharya, and D. Zhang, Polymer, 36(6), 1179 (1995)
18 G. G. Bumbu, C. Vasile, G. C. Chitanu, and A. Carpov, Polym. Degrad. Stab., 72, 99 (2001)
19 D. Garlotta, J. Polym. Environ., 9(2), 63 (2002)
20 Z. Aimin and L. Chao, Eur. Polym. J., 39, 1291 (2003)
21 R. Chandra and R. Rustgi, Polym. Degrad. Stab., 56, 185 (1997)
22 S. H. Park, Y.B. Kim, and D. S. Lee, Polymer(Korea), 24(4), 477 (2000)
23 S. H. Lee and N. Shiraishi, J. Appl. Polym. Sci., 81, 243 (2000)
24 C. G. Cho, K. H. Lee, S. W. Woo, J. B. Choi, and S. S. Hwang, J. Ind. Eng. Chem., 8(5), 866 (1997)
25 H. R. Kricheldorf, Chemosphere, 43, 49 (2001)
26 J. C. Salamone (Ed.), Polymeric Materials Encyclopedia, CRC Press, Boca Raton, Vol 1554, 1996