Studies on Requirements of Optimum Dietary Essential Fatty Acids in Juvenile Eel, Anguilla japonica

치어기 뱀장어의 사료내 필수지방산 요구량에 관한 연구

  • 배준영 (부경대학교 사료영양연구소) ;
  • 한경민 (부경대학교 사료영양연구소) ;
  • 박건준 (부경대학교 사료영양연구소) ;
  • 배승철 (부경대학교 사료영양연구소)
  • Published : 2004.11.01

Abstract

The present study was conducted to evaluate dietary requirements for essential fatty acids (EFAs) such as linoleic acid (LA, l8:2n-6), -lenolenic acid (LNA, 18:3n-3), or docosahexaenoic acid (DHA, 22:6n-3), eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid (ARA, 20:4n-6) in juvenile eel Anguilla japonica cultured in a recirculating system for 16 weeks. The experimental diets contained 50% crude protein, 10% crude lipid and 3800 kcal/kg energy.Brown fish meal and blood meal were used as the main protein sources, while coconut oil, com oil and linseed oil were used as the lipid source to yield target fatty acids ratios. At the end of the trial, the effects of essential fatty acids supplementation on weight gain (WG), specific growth rate (SGR), feeding efficiency (FE), proximate composition andwhole body fatty acids contents were examined. WG, SGR, and FEof eels fed diet D2, D3, was significantly higher (P<0.05) than those of fish fed the other diets. Whole body HUFA concentration of eels fed D 1 was significantly lower (P<0.05) than those fed the other diets. HUFA/SFA (saturated fatty acids) ratio of whole body in eels fed diets D2, D3 and D6 were significantly higher than that of eels fed diet D1 (P<0.05).DHA/EPA ratio of whole body in eels fed diet D7was significantly higher than those fed the other diets; and eels fed diet D5 showed the lowest DHA/EPA ratio among all the dietary treatments (P<0.05).Based on the experimental results, we concluded that LNA (n-3) and LA (n-6) were necessary for optimum growth of juvenile eel, and the dietary requirement of LNA and LA were 0.35∼0.5% and 0.5∼0.65%, respectively.

본 실험은 치어기 뱀장어의 사료내 필수지방산과그 적정 요구량을 평가하기 위하여 5종의 고도불포화지방산을 종류별, 수준별로 첨가하여 성장 및 체조성에 미치는 영향을 확인하였다. 실험어는 평균무게 15 g인 뱀장어 치어를 사용하였으며, 실험사료 내에 5종류의 고도불포화지방산(LA, LNA, AA, DHA, EPA)을 첨가하여 총 7가지 실험구를 3반복으로 설정하여 16주간 사육실험을 진행하였다. WG과 SGR에 있어서 D$_3$실험구가 가장 높게 나타났다(P<0.05). FE과 PER역시 성장결과와 유사한 경향을 보였는데 D$_2$, D$_3$실험구가 다른 실험구에 비해 유의적으로 높았는데, 이들 실험구간에는 유의적 차가 없었다(P<0.05). 혈액성상 중 헤마토크리트(Hematocrit)는 대조구에서 가장 높게 나타났다(P<0.05). Hemoglobin은 9.5-11.6 (g/100m1)로 전실험구간 유의적인 차이는 없었다(P<0.05). AST는 D$_{7}$실험구가 가장 높았으며, ALT와 TP는 모든 실험구에서 유의적인 차이가 없었다(P<0.05). Glucose는 D$_{5}$실험구가 가장 높았으며, Cholesterol은 D$_{4}$실험구가 다른 실험구들에 비해 가장 높았다(P<0.05). 전어체내 고도불포화지방산 함량에 있어서 대조구는 나머지 실험구들에 비해 유의적으로 낮게 나타났으며, D$_1$, D$_4$ 실험구와 D$_2$-D$_{7}$, 실험구간 사이에서는 각각 유의적인 차이가 없었다. HUFA/SFA비율에 있어서 D$_2$, D$_3$, D$_{6}$이 D$_1$에 비해 유의적으로 높게 나타났지만 D$_1$, D$_4$, D$_{5}$, D$_{7}$, 실험구간 그리고 D$_2$-D$_{7}$, 실험구간 사이에서는 각각 유의적인 차이가 없었다(P<0.05). DHA/EPA의 비율에 있어서 D$_{7}$이 유의적으로 높았으며, D$_{5}$가 유의적으로 낮았다(P<0.05). 상기의 결과를 토대로, 성장과 전어체내 지방산조성에 있어서 뱀장어 치어의 사료내 EPA와 DHA의 첨가효과 미약한 것으로 판단되며, 사료내 LNA (n-3)와 LA(n-6) HUFA을 각각 0.35%, 0.65% 첨가했을 때 WG, SGR, FE, PER이 가장 높았으나, 이전의 실험(Takeuchi, 1980)과 동일한 수준인 n-3와 n-6를 각각 0.5%씩 첨가한 실험구와는 유의적인 차이를 보이지 않았다. 이렇게 볼 때, 뱀장어 치어의 필수지방산은 LNA (n-3), LA (n-6)이고, 그 적정수준은 각각 0.35-0.5%, 0.5-0.65%임을 보여준다.

Keywords

References

  1. AOAC., 1995. Official methods of analysis of the association of official analysis chemicals, 14th edition. Arlington. AV, 1141 pp
  2. Bell, M. V., R. J. Henderson, and J. R. Sargent, 1986. The role of polyunsaturated fatty acids in fish. Comparative Biochemistry and Physiology 83B: 711-719
  3. Borlongan, I. G., and L. V. Benitez, 1992. Lipid and fatty acid composition of milkfish (Chanos chanos Forsskal) grown in freshwater and seawater. Aquaculture 104: 79-89 https://doi.org/10.1016/0044-8486(92)90139-C
  4. Castell, J. D., R. O. Sinnhuber, J. H. Wales, and D. J. Lee, 1972. Essential fatty acids in the diets of rainbow trout (Salmo gairderi): Growth, feed conversion and some gross deficiency symptoms. J. Nutr. 102: 77-86 https://doi.org/10.1093/jn/102.1.77
  5. Dave, G., M.. Johansson-Sjobeck, A. Larsson, K. Lewander and U. Lidman, 1976. Metabolic and hematological effects of starvation in the European eel, Anguilla anguilla L. III. Comparative Biochemistry and Physiology 53B: 509-515
  6. Deshimaru, O. and K. Kuroki. 1983. Studies on the optimum levels of protein and lipid in yellowtail diets. pp. 44-79 in Reports of Kagoshima Prefectural Fishery Experimental Station. Kagoshima, Japan: Kagoshima Prefectural Fishery Experimental Station
  7. De Silva, S. S., R. M. Gunasekera, R. Collins, B. A. Ingram,, C. M. Austin, 1997. Changes in the fatty acid profile of the Australian shortfin eel in relation to development. J. Fish BioI. 50: 992-998 https://doi.org/10.1111/j.1095-8649.1997.tb01624.x
  8. Degani Gad, 1986. Dietary effects of lipid source, lipid level and temperature on growth of glass eel (Anguilla anguilla). Aquaculture 56: 207-214 https://doi.org/10.1016/0044-8486(86)90336-4
  9. Gatesoupe, F. J., C. Leger, R. Metailler, and P. Luquet. 1977. Alimentation lipidique du turbot (Scophthalmus maximus L.). l. Influennce dela lonqueur de chains des acides gras de la serie $\omega$3. Annu. Hydrobiol. 8: 89-97
  10. Jezierska, B., J. R. Hazel, and S. D. Gerking, 1982. Lipid mobilization during starvation in the rainbow trout, Salmo gairdneri Richardson, with attention to fatty acids. Journal of Fish Biology 21: 681-692 https://doi.org/10.1111/j.1095-8649.1982.tb02872.x
  11. John Sargrnt, Gordon Bell, Lesley McEvoy, Douglas Tocher, Alicia Estevez, 1999. Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177: 191-199 https://doi.org/10.1016/S0044-8486(99)00083-6
  12. Leray, C., G. Nonnotte, P. Roubaud, and C. Leger. 1985. Incidence of (n-3) essential fatty acid deficiency on trout reproductive prosesses. Reprod. Nutr. Dev. 25: 567-581 https://doi.org/10.1051/rnd:19850409
  13. Metcalfe, L.D., A. A. Schmitz, J. R. Pelka, 1966. Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal. Chem., 38: 514-515 https://doi.org/10.1021/ac60235a044
  14. Olsen, Y. and H. Skjervold, 1995. Variation in content of $\omega$ 3 fatty acids in farmed Atlantic salmon, with special emphasis on effects on non-dietary factors. Aquaculture International 3: 22-35
  15. Rasanthi M. Gunasekera, Khunnitee Leelarasamee, S. Sena, De Silva. 2002. Lipid and fatty acid digestibility of three oil types in the Australian shortfin eel, Anguilla australis. Aquaculture 203: 335-347 https://doi.org/10.1016/S0044-8486(01)00680-9
  16. Sargent, J., R. J. Henderson, D. R. Tocher, 1989. The lipids. In: Halver, J.E. (Ed.), Fish Nutrition, 2nd. Academic Press, New York, pp. 153-218
  17. Satoh, S., T. Takeuchi, and T. Watanabe, 1984. Effect of starvation and environmental temperature on proximate and fatty acid composition of Tilapia nilotica. Bulletin of the Japanese Society for Scientific Fisheries 50: 79-84 https://doi.org/10.2331/suisan.50.79
  18. Satoh, S., W. E. Poe, and R. P. Wilson. 1989. Effect of dietary n3 fatty acids on weight gain and liver polar lipid fatty acid composition of fingerling channel catfish. J. Nutr. 119: 23-28 https://doi.org/10.1093/jn/119.1.23
  19. Shimma, Y., R. Suzuki, M.. Yamaguchi, and T. Akiyama. 1977. On the lipids of adult carps raised on fish meal and SCP feeds, and hatchabilities of their eggs. Bull. Freshwater Fish. Res. Lab. 27: 35-48
  20. Takeuchi, T. and T. Watanabe. 1977a. Requirement of carp for essential fatty acids. Bull. Jpn. Soc. Sci. Fish. 43: 541-551 https://doi.org/10.2331/suisan.43.541
  21. Takeuchi, T. and T. Watanabe. 1977b. Dietary levels of methyl laurate and essential fatty acid requirement of rainbow trout. Bull. Jpn. Soc. Sci. Fish. 43: 893-898 https://doi.org/10.2331/suisan.43.893
  22. Takeuchi, T, S. Arai, T Watanabe, and Y. Shimma. 1980. Requiment of eel Anguilla japonica for essential fatty acids. Bull. Jpn. Soc. Sci. Fish. 46: 345-353 https://doi.org/10.2331/suisan.46.345
  23. Takeuchi, T., S. Satoh, and T Watanabe. 1983. Requiment of Tilapia nilotica for essential fatty acids. Bull. Jpn. Soc. Sci. Fish. 49: 1127-1134 https://doi.org/10.2331/suisan.49.1127
  24. Watanebe, T., C. Ogino. Y. Koshiishi, and T. Matsunaga. 1974. Requirement of rainbow trout for essential fatty acids. Bull. Jpn. Soc. Sci. Fish. 40: 493-499 https://doi.org/10.2331/suisan.40.493
  25. Watanebe, T., T. Takeuchi, and C. Ogino. 1975. Effect of dietary methyl lioleate and linolenate on growth of carp-2. Bull. Jpn. Soc. Sci. Fish. 41: 263-269 https://doi.org/10.2331/suisan.41.263
  26. Watanebe, T, M. Ohta, C Kitajima, and S. Fujita. 1982. Improvement of dietary value of brine shrimp Artemia salina for fish larvar by feeding them on n-3 highly unsaturated fatty acids. Bull. Jpn. Soc. Sci. Fish. 48: 1175-1782
  27. Watanabe, T., C. Kitajama, and S. Fujita, 1983. Nutritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture 34: 115-143 https://doi.org/10.1016/0044-8486(83)90296-X
  28. Watanebe, T., T. Arakawa, C. Kitajima, and S. Fujita. 1984a. Effect of nutritional quality of broodstock diets on chemical components of red sea bream. Bull. Jpn. Soc. Sci. Fish. 50: 495-501 https://doi.org/10.2331/suisan.50.495
  29. Watanebe, T., S. Ohhashi, A. Itoh, C. Kitajima, and S. Fujita. 1984b. Effect of nutritional composition of diets on chemical components of red sea bream broodstock and eggs produced. Bull. Jpn. Soc. Sci. Fish. 50: 503-515 https://doi.org/10.2331/suisan.50.503
  30. Watanebe, T., T. Takeuchi, M. Saito, and K. Nishimura. 1984c. Effect of low protein-high caloris or essential fatty acid deficient diet on reproduction of rainbow trout. Jpn. Soc. Sci. Fish. 50: 1207-1215 https://doi.org/10.2331/suisan.50.1207
  31. Yokoyama, H.O., 1960. Studies on the orign, development and seasonal variation in the blood cells of perch, Percaflavescens. J. Wild. Dis. 6: 1-102
  32. Yone. Y., M. Furuichi. and S. Sakamoto. 1971. Studies on nutrition or red sea bream. 3. Nutritive value and potimum content of lipids in diet. Rep. Fish. Res. Lab. Kyusu Univ. 1: 49-60
  33. Yu, T. C., and R. O. Sinnhuber. 1979. Effect of dietary $\omega$ 3 and $\omega$6 fatty acids on growth and feed conversio https://doi.org/10.1016/0044-8486(79)90169-8