References
- Alonso, A, J. Benitez, and M. A Diaz, 1984. A sulfate, sulfite, and thiosulfate incorporating system in Candida utilis. Folia Microbiol. 29: 8- 13.
- Association of Official Analytical Chemists. 1990. Sulfur dioxide in beer: Colorimetric method, p. 718. In Helrich, K. (ed.), Official Method Analysis of the Association of Official Chemists, 5th Ed. Association of Official Analytical Chemists Inc. Arlington, VA, U.S.A.
- Avram, D. and A. T. Bakalinsky. 1997. SSU1 encodes a putative transporter with a central role in a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae. J. Bacteriol. 179: 5971- 5974.
- Bakalinsky, A. T. and R. Snow. 1990. The chromosomal constitution of wine strains of Saccharomyces cerevisiae. Yeast 6: 367- 382.
- Benitez, J. A, A. Alonso, J. Delgado, and A. Kotyk. 1983. Sulphate transport in Candida utilis. Folia Microbiol. 28: 611.
- Borst-Pauwels, G. W. 1981. Ion transport in yeast. Biochim. Biophys. Acta 650: 88- 127. https://doi.org/10.1016/0304-4157(81)90002-2
- Casal, M., H. Cardoso, and C. Leao, 1996. Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology 142: 1385- 1390.
- Casal, M. and C. Leao, 1995. Utilization of short-chain monocarboxylate acids by the yeast Torulaspora delbrueckii: Specificity of the transport systems and their regulation. Biochim. Biophys. Acta 1267: 122- 130.
- Cassio, F., C. Leao, and N. van Uden. 1987. Transport of lactate and other short-chain monocarboxylates in the yeast Saccharomyces cerevisiae. Appl. Env. Microb. 53: 509- 513.
- Cherest, H., J. Davidian, D. Thomas, V. Benes, W. Ansorge, and Y. Surdin-Kerjan. 1997. Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae. Genetics 145: 627- 635.
- Cherest, H. and Y. Surdin-Kerjan. 1992. Genetic analysis of a new mutation conferring cysteine auxotrophy in Saccharomyces cerevisiae: Updating of the sulfur metabolism pathway. Genetics 130: 51- 58.
- Dawes, I. W. and I. D. Hardie. 1974. Selective killing of vegetative cells in sporulated yeast cultures by exposure to diethyl ether. Mol. Gen. Genet. 131: 281- 289.
- Dupont, C.-H., R. Caubet, J.-P. Mazat, and B. Guerin. 1984. Isolation and characterization of an uncoupler-resistant mutant of Saccharomyces cerevisiae. Curro Genet. 8: 507-516.
- Eddy, A. A. 1997. Expulsion of uracil and thymine from the yeast Saccharomyces cerevisiae: Contrasting responses to changes in the proton electrochemical gradient. Microbiology 143: 219- 229.
- Garda, M., J. Benitez, J. Delgado, and A Kotyk. 1983. Isolation of sulphate transport defective mutants of Candida utilis: Further evidence for a common transport system for sulphate, sulphite and thiosulphate. Folia Microbiol. 28: 1-5.
- Kaiser, C., S. Michaelis, and A Mitchell. 1994. Methods in Yeast Genetics, A Cold Spring Harbor Laboratory Course Manual. Cold Spring Harbor Laboratory Press, U.S.A.
- Kim, S. H., O. H. Chung, I. S. Woo, J. H. Shin, D. H. Rho, I. K. Rhee, and H. D. Park. 2000. Fermentation and sporulation characteristics of Saccharomyces cerevisiae SHYIII isolated from Korean traditional rice wine. J. Microbiol. Biotechnol. 10: 776- 783.
- King, A D. Jr., J. D. Ponting, D. W. Sanshuck, R. Jackson, and K. Mihara. 1981. Factor affecting death of yeast by sulfur dioxide. J. Food Prot. 44: 92- 97.
- Macris, B. J. and P. Markakis. 1974. Transport and toxicity of sulphurdioxidein Saccharomyces cerevisiae val. ellipsoideus. J. Sci. Fd. Agric. 25: 21- 29.
- Park, H., N. I. Lopez, and A. T. Bakalinsky. 1999. Use of sulfite resistance in Saccharomyces cerevisiae as a dominant selectable marker. Curro Genet. 36: 339- 334.
- Park, H., N. I. Lopez, and A. T. Bakalinsky. 2000. SSU1 mediates sulphite efflux in Saccharomyces cerevisiae. Yeast 16: 881- 888.
- Pilkington, B. J. and A H. Rose. 1988. Reaction of Saccharomyces cerevisiae and Zygosaccharomyces bailii to sulfite. J. Gen. Microbiol. 134: 2823- 2830.
- Sauer, N. and J. Stolz. 1994. SUC1 and SUC2: Two sucrose transporters from Arabidopsis thaliana; expression and characterization in Baker's yeast and identification of the histidine-tagged protein. Plant J. 6: 67-77. https://doi.org/10.1046/j.1365-313X.1994.6010067.x
- Sousa, M. J., L. Miranda, M. Corte-Real, and C. Leao. 1996. Transport of acetic acid in Zygosaccharomyces bailii: Effects of ethanol and their implication on the resistance of the yeast to acidic environments. Appl. Env. Microb. 62: 3153-3157.
- Stratford, M. and A. H. Rose. 1986. Transport of sulphur dioxide by Saccharomyces cerevisiae. J. Gen. Microb. 132: 1-6.
- Taylor, S. L., N. A Higley, and R. K. Bush. 1986. Sulfites in foods: Uses, analytical methods, residues, fate, exposure assessment, metabolism, toxicity, and hypersensitivity. Adv. Food Res. 30: 1-75.
- Xu, X., J. D. Wightman, B. L. Geller, D. Avram, and A. T. Bakalinsky. 1994. Isolation and characterization of sulfite mutants of Saccharomyces cerevisiae. Curro Genet. 25: 488- 496.