Kinematics of the Nonsteady Axi-symmetric Ideal Plastic Flow Process

  • Alexandrov, S. (Institute for Problems in Mechanics, Russian Academy of Sciences) ;
  • Lee, W. (School of Materials Science and Engineering, Seoul National University) ;
  • Chung, K. (School of Materials Science and Engineering, Seoul National University, Research Institute of Advanced Materials, Seoul National University)
  • 발행 : 2004.09.01

초록

A nonsteady axi-symmetric ideal flow solution is obtained here. It is based on the rigid perfect-plastic constitutive law with the Tresca yield condition and its associated flow rule. The process is to deform a circular solid disk into a spherical shell of prescribed geometry. It is assumed that there are no rigid zones and friction stresses. The solution obtained provides the distribution of kinematic variables and involves one undetermined function of the time. This function can be in general found by superimposing an optimality criterion.

키워드

참고문헌

  1. O. Richmond and M. L. Devenpeck, Proc. 4th U.S. Natn. Cong. Appl. Mech., 1053 (1962)
  2. R. Hill, J. Mech. Phys. Solids, 15, 223 (1967) https://doi.org/10.1016/0022-5096(67)90034-8
  3. K. Chung and O. Richmond, J. Appl. Mech., 61, 176 (1994) https://doi.org/10.1115/1.2901394
  4. O. Richmond and S. Alexandrov, Acta Mech., 158, 33 (2002) https://doi.org/10.1007/BF01463167
  5. O. Richmond and H. L. Morrison, J. Mech. Phys. Solids, 15,195 (1967) https://doi.org/10.1016/0022-5096(67)90032-4
  6. O. Richmond, Mechanics of Soild States, 154 (1968)
  7. H. C. Sortais and S. Kobayashi, Int. J. Mach. Tool Des Res., 8, 61 (1968) https://doi.org/10.1016/0020-7357(68)90016-4
  8. K. Chung, W. Lee, T. J. Kang, and J. R. Youn, Fiber. Polym., 3, 120 (2002) https://doi.org/10.1007/BF02892628
  9. K. Chung, W. Lee, and W. R. Yu, J. Korean Fiber Soc., 3, 407 (2002)
  10. K. Chung, W. Lee, O. Richmond, and S. Alexandrov, Int. J. Plasticity (accepted)
  11. S. Alexandrov, W. Lee, and K. Chung, Acta Mech. (accepted)