Shape Optimum Design of Pultruded FRP Bridge Decks

인발성형된 FRP 바닥판의 형상 최적설계

  • 조효남 (한양대학교 토목ㆍ환경공학과) ;
  • 최영민 (한양대학교 토목ㆍ환경공학과 BK21) ;
  • 김희성 (한양대학교 토목ㆍ환경공학과) ;
  • 김형열 (한국건설기술연구원 구조연구부) ;
  • 이종순 (한양대학교 토목ㆍ환경공학과)
  • Published : 2004.09.01

Abstract

Due to their high strength to weight ratios and excellent durability, fiber reinforced polymer(FRP) is widely used in construction industries. In this paper, a shape optimum design of FRP bridge decks haying pultruded cellular cross-section is presented. In the problem formulation, an objective function is selected to minimize the volumes. The cross-sectional dimensions and material properties of the deck of FRP bridges are used as the design variables. On the other hand, deflection limits in the design code, material failure criteria, buckling load, minimum height, and stress are selected as the design constraints to enhance the structural performance of FRP decks. In order to efficiently treat the optimization process, the cross-sectional shape of bridge decks is assumed to be a tube shape. The optimization process utilizes an improved Genetic Algorithms incorporating indexing technique. For the structural analysis using a three-dimensional finite element, a commercial package(ABAQUS) is used. Using a computer program coded for this study, an example problem is solved and the results are presented with sensitivity analysis. The bridge consists of a deck width of 12.14m and is supported by five 40m long steel girders spaced at 2.5m. The bridge is designed to carry a standard DB-24 truck loading according to the Standard Specifications for Highway Bridges in Korea. Based on the optimum design, viable cross-sectional dimensions for FRP decks, suitable for pultrusion process are proposed.

복합재료(FRP)는 재료적 고비강도, 고내구성 등으로 인하여 건설분야에 널리 사용되고 있어, 본 연구에서는 인발성형된 FRP 바닥판의 형상최적설계를 수행하였다. 최적설계의 정식화에서 목적함수는 단위모듈의 체적을 최소화하도록 하였으며, 설계변수는 바닥판 단면의 기하적 치수와 재료적 물성을 사용하였다. 반면 바닥판의 성능을 최대한 효율적으로 설계하기 위하여 설계 제약조건으로 처짐규정, 재료파괴 기준, 좌굴하중, 바닥판 최소두께와 응력을 사용하였다. 단면형상의 효율적 결정과 시공성을 고려하여 구조적 보조부재를 포함하지 않는 튜브 모양의 형상으로 제한하였으며, 최적화 알고리즘은 Index기법을 적용하여 수렴성을 극대화한 개선된 GAs를 사용하였다. 상용 프로그램인 ABAQUS를 사용하여 3차원 유한요소해석을 수행하였고, 구조해석 결과를 최적화 과정에 필요한 제약조건으로 활용하고, 민감도 분석을 수행하였다. 본 연구를 통하여 개발한 최적화 프로그램을 검증하기 위하여, 40m의 지간, 폭 12.14m에 주형 간격이 2.5m인 단순교를 대상으로 하였으며, 도로교 설계 기준을 만족하는 DB-24하중을 적용하였다. 복합재료의 재료로 E-glass섬유를 사용하였으며, 최적설계를 수행한 결과 인발성형공법에 의한 실용적인 단면을 제안하였다.

Keywords

References

  1. Brian J. Brown, 'Design Analysis of Single-Span Advanced Composite Deck-and-Stringer Bridge Systems', Degree of Master of Science, West Virginia University, 1998
  2. 'Fiberline Design Manual for Structural Profiles in Composite Materials', Fiberline, 1995
  3. John L. Clarke, 'Structural Design of Polymer Composites', E & FN SPON, 1996
  4. J.G. Teng, 'FRP Composites in Civil Engineering', Elsevier, 2001
  5. Mantell, S. and Hoiness, B. 'Optimized design of pultruded composite beam', Journal of Reinforced Plastics and Composites, Vol. 15, 1996, pp.758-778
  6. Morton, S.K. & Webber, J.P.H. 'Optimal design of composite I-beam', Journal of Reinforced Plastics and Composites, Vol. 15, 1994, pp.758-778
  7. Razzaq, Z., Prabhakarn, R., and Sirjani, M.M. 'Load and resistance factor design (LRFD) approach for reinforced-plastic channel beam buckling', Composites, Part B: Engineering Journal, 27B Vol. 3, No. 4, 1996, pp.361-369
  8. Schramm, U. and Pilkey, W.D. 'Optimal shape design for thin-walled beam corsssection', International Journal of Numerical Methods in Engineering, Vol. 37, No. 1994, pp.4039-4058
  9. S.T. Peters 'Handbook of Composites, 2nd edition', Chapman & Hall, 1998
  10. Stroud, W.J. 'Optimization of Composite Strutures', NASA Technical Memorandum 84544, 1982
  11. Theodore, J. Reinhart 'Engineered Materials Handbook, Composites', Matals Park, 1987
  12. Tsai, S.W. 'Composite Design', Think Composites, Dayton, Ohio, 1988
  13. Vesna Savic, 'Design Optimization of Thin-Walled Composite Beams', Dissertation, University of Washington, 2000
  14. Vinson, J.R. and Sierakowski, R.L. 'The Behavior of Structures Composed of Composite Materials', Martinus Nijhoff Publishers, Boston, 1987
  15. 장수명 합리화 바닥판 개발(II)', 한국건설기술연구원, 2002
  16. 배하록, '복합 적층 개단면 보의 최적설계', 인하대학교 석사학위, 2001
  17. Babero, E.J., and Rftoyiannis, I.G. 'Local bucking of FRP beams and columns', Journal of Materials in Civil Engineering, ASCE, Vol. 5, No. 3, 1993, pp.339-355 https://doi.org/10.1061/(ASCE)0899-1561(1993)5:3(339)
  18. Lin, Z.M. Polyzois, D., and Shah, A. 'Stability of thin-walled pultruded structural members by finite element method', Thinwalled Structures, Vol. 24, 1996, pp.1-18
  19. Pizhong Qiao, 'Analysis and Design Optimization of Fiber-Reinforced Plastic(FRP) Structural Beam', Dissertation, West Virginia University, 1997
  20. Salem M. A. Optimum design of precast bridge systems prestressed with carbon fiber reinforcement polymers. MS thesis, Concordia University, 2000
  21. Zabinsky, Z. B., Tuttle, M. E., Savic, V., 'Optimization of Composite I-beams', Proceedings of the 1999 NSF Design and Manufacturing Grantees Conference, LA, California, January 1999
  22. ABAQUS Starndard Manual Vesion 6.3, Habbitt, Kalsson & Sorensen, Inc., 2002
  23. European Structural Polymeric Composites Group (EUROCOM). Structural design of polymer composites-EUROCOMP design code and handbook. Edited by Clarke, J. L., E & FN Spon, UK, 1996
  24. 도로교 설계기준, 2000
  25. AASHTO LRFD 도로교 설계기준, 1998
  26. FHWA, 'FRP Decks and Superstructures : Current Practice', 2002