DOI QR코드

DOI QR Code

INVERTIBLE AND ISOMETRIC COMPOSITION OPERATORS ON VECTOR-VALUED HARDY SPACES

  • Sharma, S.D. (Department of Mathematics, University of Jammu) ;
  • Bhand, Udhey (Department of Mathematics, University of Jammu)
  • Published : 2004.08.01

Abstract

Invertible and isometric composition operators acting on vector-valued Hardy space $H^2$(E) are characterized.

Keywords

References

  1. Carl C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic function, CRC Press, Boca Raton, New York, 1995
  2. P. L. Duren, Theory of $H^P$ spaces, Academic Press, New York, 1970
  3. W. Hensgen, Hardy Raume vecktorwertiger Functionen, Thesis, Munich, 1986
  4. E. Hille and R. S. Phillips, functional analysis and semi-groups, revised edition, Amer. Math. Soc., Providence, 1957
  5. Eric A. Nordgren, Composition operators on Hilbert spaces, Hilbert space operators, Lecture Notes in Math., vol. 693, Springer-verlag, Berlin, 1978, 37–63
  6. M. Rosenblum and J. Rovnyak, Hardy classes and operator theory, Oxford University Press, 1985
  7. H. J. Schwartz, Composition operators on $H^P$, Thesis, University of Toledo, 1969
  8. J. H. Shapiro and P. D. Taylor, Compact, nuclear and Hilbert-Schmidt composition operators on $H^P$, Indiana Univ. Math. J. 23 (1973), 471–496

Cited by

  1. Composition Operators on Generalized Hardy Spaces vol.9, pp.8, 2015, https://doi.org/10.1007/s11785-015-0464-9