INVERTIBLE AND ISOMETRIC COMPOSITION OPERATORS ON VECTOR-VALUED HARDY SPACES

S. D. SHARMA AND UDHEY BHANU

ABSTRACT. Invertible and isometric composition operators acting on vector-valued Hardy space $H^2(E)$ are characterized.

1. Introduction

If ϕ is an analytic self-map of the unit disc D, the composition operator C_{ϕ} is defined by $C_{\phi}f = fo\phi$ for f analytic in D. It is well known that every composition operator is bounded on scalar-valued Hardy Spaces H^P as well as on other spaces of analytic functions. For detailed study of these operators on H^P and other spaces of analytic functions, consult Schwartz [7], Shapiro and Taylor [8], Nordgren [5] and Cowen and MacCluer [1]. In this paper we study invertible and isometric composition operators on vector-valued Hardy space $H^2(E)$.

Let $(X, ||.||_X)$ and (E, \langle, \rangle) denote a complex Banach space and a Hilbert space respectively. For $0 , the vector-valued Hardy space <math>H^P(X)$ consists of functions $f: D \to X$ such that x^*of is holomorphic in D for every $x^* \in X^*$, the dual of X and

$$\lim_{r\to 1}\frac{1}{2\pi}\int_0^{2\pi}||f(re^{i\theta})||_X^Pd\theta<\infty,$$

where D is the open unit disc in the complex plane $\mathbb C$ with boundary ∂D . For $1 \leq p < \infty$, $H^P(X)$ becomes a Banach space with norm $|||.|||_P$ defined as

$$|||f|||_{P}^{P} = \lim_{r \to 1} \frac{1}{2\pi} \int_{0}^{2\pi} ||f(re^{i\theta})||_{X}^{P} d\theta < \infty.$$

When $X = \mathbb{C}$, we drop X and writer simply H^P for $H^P(X)$ and $||.||_P$ for $|||.|||_P$.

Received July 15, 2002.

²⁰⁰⁰ Mathematics Subject Classification: Primary 47B33; Secondary 46E22.

Key words and phrases: vector-valued hardy spaces, harmonic majorant, inner function, invertible operator, and isometry.

In terms of harmonic majorants $H^P(X)$ consists of those holomorphic functions $f: D \to X$ for which $||f(.)||_X^P$ has harmonic majorant and in this case (cf. [6, Theorem A, p.74])

$$|||f|||_P^P = h_f(0),$$

where h_f is the least harmonic majorant of $||f(.)||_X^P$.

A more detailed discussion of vector-valued analytic functions and Hardy spaces can be found in Hille and Philips [4], Rosenblum and Rovnyak [6], Hensgen [3] and a convenient reference for classical Hardy spaces is Duren [2].

We now prove the following lemma.

LEMMA 1.1. Let $f \in H^P(X)$. Then

$$||f(z)||_X^P \le \frac{2|||f|||_P^P}{1-|z|}$$
 for every $z \in D$.

Proof. Let $f \in H^P(X)$. Then $||f(z)||_X^P$ has the least harmonic majorant, say h_f . Therefore, by Harnack's inequality,

$$||f(z)||_X^P \le \frac{1+|z|}{1-|z|}h_f(0)$$

 $\le \frac{2}{1-|z|}|||f|||_P^P.$

A painless verification, using theorem C of Rosenblum and Rovnyak [6, p.76] and Harnack's inequality shows that if $\phi: D \to D$ is analytic, then $C_{\phi}: H^{P}(X) \to H^{P}(X)$ is bounded and

(1.1)
$$||C_{\phi}||^{P} \leq \frac{1 + |\phi(0)|}{1 - |\phi(0)|}.$$

In case p=2 and $X=E,H^P(E)$ becomes a Hilbert space with the inner product $\langle \langle , \rangle \rangle$ defined as

$$\langle \langle f, g \rangle \rangle = \lim_{r \to 1} \frac{1}{2\pi} \int_0^{2\pi} \langle f(re^{i\theta}), g(re^{i\theta}) \rangle d\theta.$$

Let $\{e_j : j \in J\}$ be an orthonormal basis for E, where J is an index set of any size and let $N = \{0, 1, 2, ...\}$. For $(n, j) \in N \times J$, we define $e_{nj} : D \to E$ as

$$e_{nj}(z) = z^n e_j$$
 for every $z \in D$.

Then $\{e_{nj}: (n,j) \in N \times J\}$ is an orthonormal basis for $H^P(E)$. For $z \in D$ and $j \in J$, we define $E_z^j: H^2(E) \to \mathbb{C}$ as

$$E_z^j f = \langle f(z), e_j \rangle,$$

for every $f \in H^P(E)$. Then, by Lemma 1.1, E_z^j is a bounded linear functional on $H^2(E)$. Hence by Riesz-representation theorem, there exists $k_z^j \in H^2(E)$ such that

$$E_z^j f = \langle \langle f, k_z^j \rangle \rangle,$$

for every $f \in H^2(E)$. We designate $k_z^{j_i}s$ as generalized reproducing kernels or simply kernel functions whenever there is no confusion. A straight forward calculation, using Parseval's identity, shows that

$$k_z^j(w) = \frac{\mathbf{e_j}}{1 - \bar{\mathbf{z}}\mathbf{w}},$$

for every $w \in D$ and

$$|||k_z^j|||_2^2 = \frac{1}{1 - |\mathbf{z}|^2}.$$

The invertibility of C_{ϕ} on $H^{2}(E)$ in terms of the invertibility of inducing map ϕ is characterized in Section 2. We also present a necessary and sufficient condition for C_{ϕ} to be an isometry.

2. Invertible and isometric composition operators

Schwartz [7] proved that C_{ϕ} is invertible on H^P if and only if ϕ is a conformal automorphism of the open unit disc. In the following theorem we generalize this criterion for invertibility of C_{ϕ} to vector-valued Hardy space $H^2(E)$. The techniques applied to prove this result are different from those applied by Schwartz.

THEOREM 2.1. C_{ϕ} is invertible on $H^2(E)$ if and only if ϕ is invertible.

Before we prove this theorem we first note that if C_{ϕ} is a composition operator on $H^2(E)$, then $C_{\phi}^*k_z^j=k_{\phi(z)}^j$, where C_{ϕ}^* is the adjoint of C_{ϕ} . In fact,

$$\begin{split} \langle \langle f, C_{\phi}^* k_z^j \rangle \rangle &= \langle \langle C_{\phi} f, k_z^j \rangle \rangle \\ &= \langle f(\phi(z)), e_j \rangle \\ &= \langle \langle f, k_{\phi(z)}^j \rangle \rangle \text{ for every } f \in H^2(E). \end{split}$$

This implies that

$$C_{\phi}^* k_z^j = k_{\phi(z)}^j.$$

Proof of Theorem 2.1. If ϕ is invertible, then C_{ϕ} is also invertible with $C_{\phi}^{-1} = C_{\phi^{-1}}$.

Conversely, suppose C_{ϕ} is invertible. Let $\phi(z) = \phi(w)$ for some $z, w \in D$. Then

$$C_{\phi}^* k_z^j = k_{\phi(z)}^j$$

$$= k_{\phi(w)}^j$$

$$= C_{\phi}^* k_w^j$$

Since C_{ϕ} and hence C_{ϕ}^{*} is invertible, so $k_{z}^{j} = k_{\phi(w)}^{j}$, which implies that z = w. Hence ϕ is univalent. Again, since C_{ϕ}^{*} is invertible and so it is bounded below. Hence there exists $\alpha > 0$ such that

$$|||C_{\phi}^*f|||_2 \ge \alpha |||f|||_2$$

for every $f \in H^2(E)$. In particular,

$$|||C_{\phi}^* k_z^j|||_2 \ge \alpha |||k_z^j|||_2$$

for every $(z, j) \in D \times J$, and so by the above remark

(2.1)
$$\frac{|||\mathbf{k}_{\phi(z)}^{\mathbf{j}}|||_{2}}{|||\mathbf{k}_{z}^{\mathbf{j}}|||_{2}} \ge \alpha \text{ for every } (z, j) \in D \times J.$$

If ϕ is not onto, then we can find $w \in \partial \phi(D) \cap D$ and a sequence $\{z_n\} \subset D$ such that

$$\lim_{n} \phi(z_n) = w.$$

By open mapping theorem $|z_n| \to 1$. Since

$$|||k_{\phi(z_n)}^j|||_2 \to |||k_w^j|||_2, \ |||k_{(w)}^j|||_2 < \infty,$$

and $|||k_{(z_n)}^j|||_2 \to \infty$ as $n \to \infty$, we conclude that

$$\frac{|||\mathbf{k}_{\phi(\mathbf{z_n})}^{\mathbf{j}}|||_2}{|||\mathbf{k}_{\mathbf{z_n}}^{\mathbf{j}}|||_2} \to 0 \text{ as } n \to \infty,$$

a contradiction to (2.1). Hence ϕ must be onto. This completes the proof of the theorem.

We next present a necessary and sufficient condition for C_{ϕ} to be an isometry.

THEOREM 2.2. C_{ϕ} is an isometric on $H^2(E)$ if and only if ϕ is inner and $\phi(0) = 0$.

To prove this theorem we need the following lemmas.

LEMMA 2.3. $||C_{\phi}||^2 \ge \frac{1}{1-|\phi(0)|^2}$.

Proof. Since $C_{\phi}^* k_z^j = k_{\phi(z)}^j$ for every $(z,j) \in D \times N$ and $|||k_o^j|||_2 = 1$, we have $\frac{1}{1-|\phi(0)|^2} = |||k_{\phi(o)}^j|||_2 = |||C_{\phi}^* k_o^j|||_2 \le ||C_{\phi}||^2$. This completes the proof.

LEMMA 2.4. $||C_{\phi}|| = 1$ if and only if $\phi(0) = 0$.

Proof follows from the inequality (1.1) and Lemma 2.3.

Proof of theorem 2.2. Suppose C_{ϕ} is an isometry on $H^2(E)$. Then $|||C_{\phi}f|||_2 = |||f|||_2$ for every $f \in H^2(E)$. In particular, taking $f = e_{ij}$, we get, $\frac{1}{2\pi} \int_0^{2\pi} |\phi(e^{i\theta})|^2 d\theta = 1$ and so ϕ is inner. Also, since C_{ϕ} is an isometry $|C_{\phi}| = 1$ and so by Lemma2.4 $\phi(0) = 0$.

Conversely, suppose ϕ is inner and $\phi(0) = 0$. Then $\overline{\phi(e^{i\theta})} = [\phi(e^{i\theta})]^{-1}$ a.e. Further, if $f \in H^2(E)$, then $f(z) = \sum_{n=1}^{\infty} a_n z^n (a_n \in E)$ and $|||f|||_2 = \sum_{n=1}^{\infty} a_n z^n (a_n \in E)$

 $\sum_{n=1}^{\infty} ||a_n||_E^2 \text{ see ([6, section 1.15] and [4, chapter III])}.$

$$\begin{aligned} |||C_{\phi}f|||_{2}^{2} &= |||fo\phi|||_{2}^{2} \\ &= \lim_{r \to 1} \frac{1}{2\pi} \int_{0}^{2\pi} \langle \sum_{m=0}^{\infty} a_{m} \phi^{m}(re^{i\theta}), \sum_{n=0}^{\infty} a_{n} \phi^{n}(re^{i\theta}) d\theta \rangle \\ &= \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \langle a_{m}, a_{n} \rangle \lim_{r \to 1} \frac{1}{2\pi} \int_{0}^{2\pi} \phi^{m-n}(re^{i\theta}) d\theta \\ &= \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \langle a_{m}, a_{n} \rangle \frac{1}{2\pi} \int_{0}^{2\pi} \phi^{m-n}(e^{i\theta}) d\theta \\ &= \sum_{m,n \in N, m > n} \langle a_{m}, a_{n} \rangle \phi^{m-n}(0) + \sum_{m,n \in N, m < n} \langle a_{m}, a_{n} \rangle \phi^{\overline{m-n}}(0) \\ &+ \sum_{m=0}^{\infty} \langle a_{n}, a_{n} \rangle \frac{1}{2\pi} \int_{0}^{2\pi} \phi^{n} |(e^{i\theta})|^{2} d\theta. \ (*) \end{aligned}$$

Since $\phi^{m-n}(0) = 0$ for m > n, from (*) we have

$$|||C_{\phi}f|||_2^2 = \sum_{n=0}^{\infty} \langle a_n, a_n \rangle$$

$$= \sum_{n=0}^{\infty} ||a_n||_E^2$$
$$= |||f|||_2^2.$$

Hence C_{ϕ} is an isometry.

ACKNOWLEDGEMENT. The authors wish to thank Professor R. K. Singh for his many suggestions and helpful comments. The authors are also thankful to the referee for pointing out typographical errors.

References

- [1] Carl C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic function, CRC Press, Boca Raton, New York, 1995.
- [2] P. L. Duren, Theory of H^P spaces, Academic Press, New York, 1970.
- [3] W. Hensgen, Hardy Raume vecktorwertiger Functionen, Thesis, Munich, 1986.
- [4] E. Hille and R. S. Phillips, functional analysis and semi-groups, revised edition, Amer. Math. Soc., Providence, 1957.
- [5] Eric A. Nordgren, Composition operators on Hilbert spaces, Hilbert space operators, Lecture Notes in Math., vol. 693, Springer-verlag, Berlin, 1978, 37–63.
- [6] M. Rosenblum and J. Rovnyak, Hardy classes and operator theory, Oxford University Press, 1985.
- [7] H. J. Schwartz, Composition operators on H^P, Thesis, University of Toledo, 1969.
- [8] J. H. Shapiro and P. D. Taylor, Compact, nuclear and Hilbert-Schmidt composition operators on H^P, Indiana Univ. Math. J. 23 (1973), 471–496.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF JAMMU, JAMMU-180 006, INDIA *E-mail*: somdatt_jammu@yahoo.co.in