HSPICE Macro-Model and Midpoint-Reference Generation Circuits for MRAM

MRAM용 HSPICE 마크로 모델과 midpoint reference 발생 회로에 관한 연구

  • 이승연 (이화여자대학교 정보통신학과) ;
  • 이승준 (이화여자대학교 정보통신학) ;
  • 신형순 (이화여자대학교 정보통신학과)
  • Published : 2004.08.01

Abstract

MRAM uses magneto-resistance material as a storage element, which stores cell data as a polarization of spin in a free magnetic layer. This magneto-resistance material has hysteresis, asteroid curve at the thermal variation, and R-V characteristics for switching the data. Therefore, a macro-model which can reproduce these characteristics is required for MRAM simulation. We propose a macro-model of TMR (Tunneling Magneto Resistance) that can reproduce all of these characteristics on HSPICE. Also we propose a novel sensing scheme, which generates reference resistance having the medium value, ( $R_{H}$+ $R_{L}$)/2, for a wide range of applied voltage and present simulation results based on the HSPICE macro-model of MTJ that we have developed.d.d.

MRAM (Magneto-resistive Random Access Memory)은 자성체의 스핀 방향을 정보원으로 하는 비휘발성 메모리로 magneto-resistance 물질을 정보 저장 소자로 사용한다. 본 논문에서는 MRAM 시뮬레이션시 MTJ (Magnetic Tunneling Junction)의 hysteretic 특성, asteroid 특성, R-V 특성을 HSPICE에서 재현할 수 있는 새로운 macro-model을 제안하고 HSPICE에 적용하여 그 정확도를 검증하였다. 또한 종래의 reference cell 회로에 비하여 정확한 중간 저항 값을 유지하는 새로운 reference cell 회로를 제안하고 이를 본 논문에서 제안한 macro-model을 이용하여 검증하였다.

Keywords

References

  1. S. Tehrani, J. M. Slaughter, E. Chen, M. Durlam, J. Shi, and M. DeHerrera, 'Progress and Outlook for MRAM Technology,' IEEE Transactions on magnetics, Vol. 35, No. 5, p. 2814, 1999 https://doi.org/10.1109/20.800991
  2. J. S. Moodera, Lisa R. Kinder, Terrilyn M. Wong, R. Meservey, 'Large Magneto-resistance at Room Temperature in Ferro-magnetic Thin Film Tunnel Junctions,' Phys. Rev., Vol. 74, No. 16, p. 3273, 1995 https://doi.org/10.1103/PhysRevLett.74.3273
  3. D. Wang, M. Tondra, C. Nordman, and J. M. Daughton, 'Thermal Stability of Spin Dependent Tunneling Junctions Pinned with IrMn,' IEEE Transactions on magnetics, Vol. 35, No. 5, p. 2886, 1999 https://doi.org/10.1109/20.801014
  4. J. Nickel, 'Magneto-resistance Overviews,' Computer Peripherals, June 1995
  5. B. N. Engel, N. D. Rizzo, J. Janesky, J. slaughter, R. Dave, M. DeHerrera, M. Durlam, and S. Tehrani, 'The Science and of Magnetoresistive Tunneling Memory,' IEEE Transactions on nano-technology, Vol. 1, No. 1, p. 32, 2002 https://doi.org/10.1109/TNANO.2002.1005424
  6. K. Tsuji, K. Suemitsu, et al., '0.1 ${\mu}m$-rule MRAM Development using Hard Mask,' IEEE IEDM, p. 799, December 2001
  7. H. S. Jeong, G. T. Jeong, and G. H. Koh, et al., 'Fully Integrated 64Kb MRAM with Novel Reference Cell scheme,' IEEE IEDM, p. 551 https://doi.org/10.1109/IEDM.2002.1175901
  8. B. Das and W. C. Black, 'A Generalized HSPICE Macro-Model for Spin-Dependent-Tunneling Devices,' IEEE Transactions on magnetics, Vol. 35, No. 5, pp. 2889 https://doi.org/10.1109/20.801015
  9. M. Durlam, et al., 'A Low Power 1Mbit MRAM Based on 1T1MTJ Bit Cell with Copper Interconnects,' Symposia on VLSI Circuits, p.158 https://doi.org/10.1109/VLSIC.2002.1015073
  10. P. Naji, M. Durlam, S. Tehrani, J. Calder, and M. DeHerrera, 'A 256kb1T1MTJ Nonvolatile Magneto-resistive RAM,' IEEE International Solid Circuits Conference, p. 122, February 2001