References
- Science v.277 Control of filament formation in Candida albicans by the transcriptional repressor TUP1 Braun, B. R.;A. D. Johnson https://doi.org/10.1126/science.277.5322.105
- Genetics v.155 TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans Braun, B. R.;A. D. Johnson
- Trends Microbiol. v.7 Regulatory networks controlling Candida albicans morphogenesis Brown, A. J. P.;N. A. R. Gow https://doi.org/10.1016/S0966-842X(99)01556-5
- Biochem. Biophys. Res. Commun. v.289 Augmented expression of peroxiredoxin I in lung cancer Chang, J. W.;H. B. Jeon;J. H. Lee;J. S. Yoo;J. S. Chun;J. H. Kim;Y. J. Yoo https://doi.org/10.1006/bbrc.2001.5989
- Cell v.39 Lariat structures are in vivo intermediates in yeast pre-mRNA splicing Domdey, H.;B. Apostol;R. J. Lin;A. Newman;E. Brody;J. Abelson https://doi.org/10.1016/0092-8674(84)90468-9
- Microbiology v.146 Transcription factors in Candida albicans-enviromental control of morphogenesis Ernst, J. F. https://doi.org/10.1099/00221287-146-8-1763
- J. Bacteriol. v.181 no.22 PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper crosslinking of beta-1,3- and beta-1,6-glucans Fonzi, W.
- Clin. Microbiol. Rev. v.9 no.4 Epidemiology of nosocomial fungal infections Fridkin, S.;W. Jarvis
- Infect. Immun. v.63 no.11 Reduced virulence of Candida albicans PHR1 mutants Ghannoum, M. A.;B. Spellberg;S. M. Saporito-Irwine;W. A. Fonzi
- J. Microbiol. Biotechnol. v.13 no.1 Identification of lactic acid bacteria in KImchi using SDS PAGE profiles of whole cell proteins Kim, T. W.;S. H. Jung;J. Y. Lee;S. K. Choi;S. H. Park;J. S. Jo;H. Y. Kim
- Trends Microbiol. v.6 Candida albicans hyphal formation and virulence: Is there a clearly defined role? Kobayashi, S. D.;J. E. Cutler https://doi.org/10.1016/S0966-842X(98)01218-9
- Curr. Opin. Cell Biol. v.7 Budding yeast morphogenesis: Signaling, cytoskeleton and cell cycle Kron, S. J.;N. A. Gow https://doi.org/10.1016/0955-0674(95)80069-7
- Science v.266 Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog Liu, H.;J. Kohler;G. R. Fink https://doi.org/10.1126/science.7992058
- Cell v.90 no.5 Nonfilamentous C. albicans mutants are avirulent Lo, H. J.;J. R. Kohler;B. DiDomenico;D. Loebenberg;A. Cacciapuoti;G. R. Fink https://doi.org/10.1016/S0092-8674(00)80358-X
- Biochim. Biophys. Acta v.1531 Lysophosphatidylcholine derived from deer antler extract suppresses hyphal transition in Candida albicans through MAP kinase pathway Min, J. Y.;Y. J. Lee;Y. A. Kim;H. S. Park;S. Y. Han;G. J. Jhon;W. J. Choi https://doi.org/10.1016/S1388-1981(01)00088-9
- Curr. Opin. Microbiol. v.1 Dimorphism and virulence in Candida albicans Mitchell, A. P. https://doi.org/10.1016/S1369-5274(98)80116-1
- J. Biol. Chem. v.275 Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall Mouyna, I.;T. Fontaine;M. Vai;M. Monod;W. A. Fonzi;M. Diaquin;L. Popolo;R. P. Hartland;J. P. Latge https://doi.org/10.1074/jbc.275.20.14882
- Mol. Cell. Biol. v.17 PHR2 of Candida albicans encodes a functional homolog of the pH-regulated PHR1 with an inverted pattern of pH-dependent expression Muhlschlegel, F. A.;W. A. Fonzi https://doi.org/10.1128/MCB.17.10.5960
- ASM NEWS v.60 Candida species and virulence Odds, F. C.
- Electrophoresis v.21 Cross-species identification of novel Candida albicans immunogenic proteins by combination of two-dimensional polyacrylamide gel electrophoresis and mass spectrometry Pardo, M.;M. Ward;A. Pitarch;M. Sanchez;C. Nombela;W. Blackstock;C. Gil https://doi.org/10.1002/1522-2683(20000701)21:13<2651::AID-ELPS2651>3.0.CO;2-3
- J. Microbiol. Biotechnol. v.8 no.3 Deer antler extract selectively suppresses hyphal growth in dimorphic fungus, Candida albicans Park, H. S.;G. J. Jhon;W. J. Choi
- J. Microbiol. Biotechnol. v.8 no.4 Hyphal growth inhibition by deer antler extract mimic the effect of chitin synthase deletion in Candida albicans Park, H. S.;G. J. Jhon;W. J. Choi
- Electrophoresis v.20 no.4-5 Two-dimensional gel electrophoresis as analytical tool for identifying Candida albicans immunogenic proteins Pitarch, A.;M. Pardo;A. Jimenez;J. Pla;C. Gil;M. Sanchez;C. Nombela https://doi.org/10.1002/(SICI)1522-2683(19990101)20:4/5<1001::AID-ELPS1001>3.0.CO;2-L
- Mol. Cell. Biol. v.15 PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis Saporito-Irwin, S. M.;C. E. Birse;P. S. Sypherd;W. A. Fonzi https://doi.org/10.1128/MCB.15.2.601
- J. Bacteriol. v.180 Cloning and characterization of PRA1, a gene encoding a novel pH-regulated antigen of Candida albicans Sentandreu, M.;M. V. Elorza;R. Sentandreu;W. A. Fonzi
- Infect. Immun. v.67 Chlamydospore formation in Candida albicans requires the Efg1p morphogenetic regulator Sonneborn, A.;D. Bockmuhl;J. F. Ernst
- EMBO J. v.16 Efg1, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi Stoldt, V. R.;A. Sonneborn;C. Leuker;J. F. Ernst https://doi.org/10.1093/emboj/16.8.1982
- Yeast v.20 Identification of proteins expressed highly in the hyphae of Candida albicans by two-dimensional electrophoresis Choi, W. Y.;Y. J. Yoo;M. K. Kim;D. H. Shin;H. B. Jeon;W. J. Choi https://doi.org/10.1002/yea.1022