References
- Anal. Chem. v.46 Improved penicillin selective enzyme electrode Cullen, L. F.;J. F. Rusling;A. Schleifer;G. J. Papariello https://doi.org/10.1021/ac60349a007
- Biosens. Bioelectron. v.16 Investigation of highly sensitive piezoelectric immunosensors for 2,4-dichlorophenoxyacetic acid Halamek, J.;M. Hepel;P. Skladal https://doi.org/10.1016/S0956-5663(01)00132-4
- Biosens. Bioelectron. v.13 Separation-free electrochemical immunosensor for rapid determination of atrazine Keay, R. W.;C. J. McNeil https://doi.org/10.1016/S0956-5663(98)00008-6
- Biosens. Bioelectron. v.7 Penicillinase optodes: Substrate determinations using batch, continuous flow and flow injection analysis operation conditions Hobel, W.;A. Papperger;J. Polster https://doi.org/10.1016/0956-5663(92)85006-V
- J. AOAC Intl. v.77 Confirmation of chloramphenicol residues in bovine milk by gas chromatography/mass spectrometry Kijk, P. J.
- J. Food Sci. v.61 Characterization and food application of an amperometric needle-type L-lactate sensor Kim. N.;R. Haginoya;I. Karube https://doi.org/10.1111/j.1365-2621.1996.tb14177.x
- Food Agric. Immunol. v.12 Competitive ELISA of chloramphenicol: Influence of immunoreagent structure and application of the method for the inspection of food of animal origin Kolosova, A. Y.;J. V. Samsonova;A. M. Egorov https://doi.org/10.1080/095401000404067
- KFDA Notice 2000-18 Test methods for residual compounds in the meat-processed foods Korea Food and Drug Administration
- J. Food Prot. v.59 Comparisons of biosensor, microbiological, immunochemical, and physical methods for detection of sulfamethazine residues in raw milk Mellgren, C.;A. Sternesjo;P. Hammer;G. Suhren;L. Bjorck;W. Heeschen https://doi.org/10.4315/0362-028X-59.11.1223
- MAF Notice 2001-5 Indication of residual analysis in meats Ministry of Agriculture and Fisheries
- J. AOAC Intl. v.85 Liquid chromatographic determination of multiple sulfonamides, nitrofurans and chloramphenicol residues in pasteurized milk Norma, P.;G. Rey;N. Mario;D. Gilberto;L. Hectot;E. Irma;M. Zenaida
- Biosens. Bioelectron. v.11 Chemiluminescent immunoenzyme biosensor with a thinlayer flow-through cell; Application for study of a real-time biomolecular antigen-antibody interaction Osipov, A. P.;N. V. Zaitseva:A. M. Egorov https://doi.org/10.1016/0956-5663(96)89437-1
-
Anal. Chem.
v.68
Electrochemiluminescence-based detection of
${\beta}$ -lactam antibiotics and${\beta}$ -lactamases Pam, L.;L. S. Rosa;T. M. Mark https://doi.org/10.1021/ac951072p - Biosens. Bioelectron. v.19 Development of a chloramphenicol sensor based on thiol or sulfide mediated self-assembled antibody monolayers Park, I. S.;D. K. Kim;N. Adanyi;M. Varadi;N. Kim https://doi.org/10.1016/S0956-5663(03)00268-9
- Food Sci. Biotechnol. v.11 Characteristics of FIA-type hypoxanthine sensors prepared by some immobilization methods Park, I.-S.;N. Kim;B.-S. Noh;B.-D. Choi
- J. Microbiol. Biotechnol. v.12 Detection of aromatic pollutants by bacterial biosensors bearing gene fusions constructed with the dnaK promoter of Pseudomonas sp. DJ-12 Park, S.-H.;D.-H. Lee;K.-H. Oh;K. Lee;C.-K. Kim
- Sens. Actuat. B v.68 Cross-sensitivity of a capacitive penicillin sensor combined with a diffusion barrier Poghossian, A.;M. Thust;M. J. Schoning;M. Muller-Veggian;P. Kordos;H. Luth https://doi.org/10.1016/S0925-4005(00)00442-1
- Sens. Mater. v.13 Penicillin detection by means of silicon-based field-effect structures Poghossian, A.;M. Thust;P. Schroth;A. Steffen;H. Luth;M. J. Schoning
- Anal. Chem. v.48 Immobilized enzyme-based flowing-stream analyzer for measurement of penicillin in fermentation broths Rusling, J .F.;G. H. Luttrell;L. F. Cullen;G. J. Papariello https://doi.org/10.1021/ac50002a038
- Proc. Eurosensors X v.3 A novel silicon-based pH sensor prepared by pulsed laser deposition technique Schoning, M. J.;L. Beckers;A. Schaub;W. Zander;J. Schubert;S. Mesters;P. Kordos;H. Luth;R. Puers(ed.)
- Sens. Actuat. B v.35 A highly long-term stable silicon-based pH sensor using pulsed laser deposition technique Schoning, M. J.;D. Tsarouchas;A. Schaub;L. Beckers;W. Zander;J. Schubert;P. Kordos;H. Luth https://doi.org/10.1016/S0925-4005(97)80060-3
- Biosens. Bioelectron. v.12 Construction and characterization of the direct piezoelectric immunosensor for atrazine operating in solution Steegborn, C.;P. Skladal https://doi.org/10.1016/0956-5663(96)89086-5
- Technical Library of Supelco, Chromatograms/Analytical Techniques/Liquid Chromatography/Chloramphenicol Supelco
- Anal. Chim. Acta v.323 A long-term stable penicillin-sensitive potentiometic biosensor with enzyme immobilized by heterobifunctional crosslinking Thust, M.;M. J. Schoning;J. Vetter;P. Kordos;H. Luth https://doi.org/10.1016/0003-2670(95)00619-2
- J. Mol. Recog. v.9 Biosensors in flow-injection systems for biomedical analysis, process and envirnmental monitoring Tran-Minh, C. https://doi.org/10.1002/(SICI)1099-1352(199634/12)9:5/6<658::AID-JMR317>3.0.CO;2-M
- J. Pharm. Biomed. Anal. v.8 Determination of penicillin in pharmaceutical formulations by flow injection analysis using an optimised immobilized penicillinase reactor and iodometric detection Van Opstal, M. A. J.;R. Wolster;J. S. Blauw;P. C. Van Krimpen;W. P. Van Bennekom;A. Bult https://doi.org/10.1016/0731-7085(90)80006-B
- J. Microbiol. Biotechnol. v.13 Ion-sensitive field effect transistor-based multi-enzyme sensor for alternative detection of mercury ions, cyanide and pesticide Volotovskky, V.;N. Kim
-
Chemistry of
${\beta}$ -Lactams Waley, S. G. - J. Chromatogr. v.566 Analysis of chloramphenicol residues in swine tissues and milk: Comparative study using different screening and quantitative methods Water, C. V.;N.Haagsma https://doi.org/10.1016/0378-4347(91)80122-S
- Biotechnol. Bioeng. v.39 A fluorescence-based fiber optic biosensor for the flowinjection analysis of penicillin Xie, X.;A. A. Suleiman;G. G. Guilbault https://doi.org/10.1002/bit.260391111