References
-
J. Immunol. Methods
v.170
A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: An alternative to [
$^3H$ ]thymidine incorporation assay Ahmed, S. A.;R. M. Gogal;J. E. Walsh - Bioabsorbable in Tissue Engineering in Polymeric Materials Encyclopedia Burg, K. J. L.;S. W. Shalaby;JC Salamone(ed.)
- Absorbable Maetrials and Pertinent Devices(2nd Ed.) Burg, K. J. L.;S. W. Shalaby
- J. Biomed. Mater. Res. v.15 Comparative study of seeding methods for three-dimensional polymeric scaffolds Burg, K. J. L. Jr.;W. D. Holder;C. R. Culberson;G. J. Beiler;K. G. Greene;A. B. Loebsack;W. D. Roland;P. Eiselt;D. J. Mooney;C. R. Halberstadt
- Synthetic Biodegradable Polymer Scaffolds The history of tissur engineering using synthetic biodegradable scaffolds and cells Chaignaud, B.;R. S. Langer;J. P. Vacanti;Atala, A.(ed.);Langer, R. S.(ed.);Mooney, D. J.(ed.);Vacanti, J. P.(ed.)
- Staining Procedures(4th Ed.) Clerk, G.
- J. Biomed. Mater. Res. v.27 Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers Freed, L. E.;J. C. Marquis;A. Nohria;J. Emmanual;A. G. Mikos;R. Langer https://doi.org/10.1002/jbm.820270104
- Biotechnol. Bioeng. v.43 Composition of cell-polymer cartilage implants Freed, L. E.;J. C. Marquis;G. Vunjak-Novakovic;J. Emmanual;R. Langer https://doi.org/10.1002/bit.260430710
- J. Biomed. Mater. Res. v.42 Open pore biodegradable martices formed with gas foaming Harris, L. D.;B. S. Kim;D. J. Mooney https://doi.org/10.1002/(SICI)1097-4636(19981205)42:3<396::AID-JBM7>3.0.CO;2-E
- J. Microbiol. Biotechnol. v.13 Tissue engineering of smooth muscle under a mechanically dynamic condition Kim, B. S.;S. I. Jeong;S. W. Cho;J. Nikolovski;D. J. Mooney;S. H. Lee;O. J. Jeon;T. W. Kim;S. H. Lim;Y. S. Hong;C. Y. Choi;Y. M. Lee;S. H. Kim;Y. H. Kim
- Science v.260 Tissue engineering Langer, R.;J. P. Vacanti https://doi.org/10.1126/science.8493529
- J. Microbiol. Biotechnol. v.12 Determination of optimum aggregates of porcine hepatocytes as a cell source of a bioartificial liver Lee, D. H.;J. H. Lee;J. E. Choi;Y. J. Kim;S. K. Kim;J. K. Park
- FASEB J. v.12 A completely biological tissue-engineered human blood vessel L'Heureux, N.;S. Paquet;R. Labbe;L. Germain;F. A. Auger https://doi.org/10.1096/fasebj.12.1.47
- J. Biomed. Mater. Res. v.48 The development of an embdding technique for polylactide sponges Loebsack, A. B.;C. R. Halberstadt;Jr. W. D. Holder;H. E. Gruber;C. R. Culberson;K. G. Greene;W. D. Roland;K. J. L.Burg https://doi.org/10.1002/(SICI)1097-4636(1999)48:4<504::AID-JBM16>3.0.CO;2-Y
-
Cell Tissue Kinet.
v.14
Potential pitfalls of (
$^3H$ ) thymidine techniques to measure cell proliferation Maurer, H. R. - Biomaterials v.17 Stabilized polyglycolic acid fibre-based tubes for tissue engineering Mooney, D. J.;C. L. Mazzoni;C. Breuer;K. McNamara;D. Hern;J. P. Vacanti;R. Langer https://doi.org/10.1016/0142-9612(96)85573-6
- J. Immunol. Methods v.65 Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays Mosmann, T. https://doi.org/10.1016/0022-1759(83)90303-4
- Science v.284 Functional arteries grown in vitro Niklason, L. E.;J. Gao;W. M. Abbott;K. K. Hirschi;S. Houser;R. Marini;R. Langer https://doi.org/10.1126/science.284.5413.489
- Methods Cell Biology v.52 Rebecca, R. P.;B. Claudio;C. Linda;M. Robert;T .C. Michael
- J. Immunol. Methods v.142 An improved colorimetric assay for cell proliferation and viability utilizing tetrazolium salt XTT Roehm, N. W.;G. H. Rodgers;S. M. Hatfield;A. L. Glasebrook https://doi.org/10.1016/0022-1759(91)90114-U
- J. Surg. v.85 Long-term results of femorotibial bypass with vein or polytetrafluoroethylene Sayers, R. D.;S. Raptis;M. Berce;J. H. Miler https://doi.org/10.1046/j.1365-2168.1998.00765.x
- Cancer Res. v.48 Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines Scudiero, D. A.;R. H. Shoemaker;K. D. Paull;A. Monks;S. Tierney;T. H. Nofziger;M. J. Currents;D. Seniff;M. R. Boyd
- Biomaterials v.17 Tissue engineering and autologous transplant formation: Practical approaches with resorbable biomaterials and new cell culture techniques Sittinger, M.;J. Bujia;N. Rotter;D. Reitzel;W. W. Minuth;G. R. Burmester https://doi.org/10.1016/0142-9612(96)85561-X
- J. Biomater. Sci. Polym. Ed. v.7 Fabrication of biodegradable polymer scaffolds to engineer trabecular bone Thomson, R. C.;M. J. Yaszemski;J. M. Powers;A. G. Mikos https://doi.org/10.1163/156856295X00805
- Biomaterials v.17 Magnetically oriented tissue equivalent tubes: Application to a circumferentially orientated media-equivalent Tranquillo, R. T.;T. S. Girton;B. A. Broberek;T. G. Triebes;D. L. Mooradian https://doi.org/10.1016/0142-9612(96)85573-6
- N. Engl. J. Med. v.336 Use of cardiac procedures and outcomes in elderly patients with myocardial infarction in the United States and Canada Tu, J. V.;C. L. Pashos;C. D. Naylor;E. Chen https://doi.org/10.1056/NEJM199705223362106
- Science v.231 A blood vessel model constructed from collagen and cultured vascular cells Weinberg, C. B.;E. Bell https://doi.org/10.1126/science.2934816
- Synthetic Biodegradable Polymer Scaffolds The history of tissue engineering using synthetic biodegradable scaffolds and cells Wong, W. H.;D. J. Mooney https://doi.org/10.1007/978-1-4612-4154-6_4
- J. Cell. Biochem. v.56 Tissue engineering a blood vessel: Regulation of vascular biology by mechanical stresses Ziegler, T.;R. M. Nerem https://doi.org/10.1002/jcb.240560215