Comparative Study of Seeding and Culture Methods to Vascular Smooth Muscle Cells on Biodegradable Scaffold

  • Kim, Dong-Ik (Division of Vascular Surgery, Samsung Medical Center) ;
  • Park, Hee-Jung (Samsung Biomedical Research Institute) ;
  • Eo, Hyun-Seoun (Samsung Biomedical Research Institute) ;
  • Suh, Soo-Won (Department of Biomedical Engineering, Sungkyunkwan University School of Medicine) ;
  • Hong, Ji-Hee (Department of Biomedical Engineering, Sungkyunkwan University School of Medicine) ;
  • Lee, Min-Jae (Samsung Biomedical Research Institute) ;
  • Kim, Jong-Sung (Samsung Biomedical Research Institute) ;
  • Jang, In-Sung (Samsung Biomedical Research Institute) ;
  • Kim, Byung-Soo (Department of Chemical Engineering, Hanyang University)
  • Published : 2004.08.01

Abstract

How to improve the cell culture method on scaffolds is important in the tissue engineering fileld. In this study, we optimized seeding and culture methods to vascular smooth muscle cells (VSMCs) on biodegradable polymer scaffold. The primary culture of VSMCs obtained from canine external jugular vein was accomplished by applying the explant-derived method. The primary cultured VSMCs were seeded into scaffolds and then cultured by using various different methods; static or dynamic seeding, static or dynamic culture. The difference in proliferative response of VSMCs was analyzed with an alamar blue assay. Cell-polymer construct was examined by histochemical method and scanning electron microscopy. Mesh type scaffold ($10 \times 10 \times0.4 mm$) was made of polyglycolic acid (PGA) suture thread. The PGA mesh type scaffold was 45% in porosity, and 0.03 g in weight. The primary cultured VSMCs were confirmed with immunohistochemical staining using monoclonal anti-$\alpha$-smooth muscle actin. The density and distribution of proliferated VSMCs within the scaffold and cellular adherence on the surface of the scaffold showed better results in the static seeding condition than in the dynamic condition. Under the same condition of seeding method as the static condition, the dynamic culture condition showed enhanced proliferation rates of the VSMCs when compared to the static culture condition. In conclusion, to improve the VSMCs proliferation in vitro, static seeding is better than the dynamic condition. In the culture condition, however, culture under the dynamic status is better than the static condition. This was a pilot study to manufacture artificial vascular vessel by tissue engineering.

Keywords

References

  1. J. Immunol. Methods v.170 A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: An alternative to [$^3H$]thymidine incorporation assay Ahmed, S. A.;R. M. Gogal;J. E. Walsh
  2. Bioabsorbable in Tissue Engineering in Polymeric Materials Encyclopedia Burg, K. J. L.;S. W. Shalaby;JC Salamone(ed.)
  3. Absorbable Maetrials and Pertinent Devices(2nd Ed.) Burg, K. J. L.;S. W. Shalaby
  4. J. Biomed. Mater. Res. v.15 Comparative study of seeding methods for three-dimensional polymeric scaffolds Burg, K. J. L. Jr.;W. D. Holder;C. R. Culberson;G. J. Beiler;K. G. Greene;A. B. Loebsack;W. D. Roland;P. Eiselt;D. J. Mooney;C. R. Halberstadt
  5. Synthetic Biodegradable Polymer Scaffolds The history of tissur engineering using synthetic biodegradable scaffolds and cells Chaignaud, B.;R. S. Langer;J. P. Vacanti;Atala, A.(ed.);Langer, R. S.(ed.);Mooney, D. J.(ed.);Vacanti, J. P.(ed.)
  6. Staining Procedures(4th Ed.) Clerk, G.
  7. J. Biomed. Mater. Res. v.27 Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers Freed, L. E.;J. C. Marquis;A. Nohria;J. Emmanual;A. G. Mikos;R. Langer https://doi.org/10.1002/jbm.820270104
  8. Biotechnol. Bioeng. v.43 Composition of cell-polymer cartilage implants Freed, L. E.;J. C. Marquis;G. Vunjak-Novakovic;J. Emmanual;R. Langer https://doi.org/10.1002/bit.260430710
  9. J. Biomed. Mater. Res. v.42 Open pore biodegradable martices formed with gas foaming Harris, L. D.;B. S. Kim;D. J. Mooney https://doi.org/10.1002/(SICI)1097-4636(19981205)42:3<396::AID-JBM7>3.0.CO;2-E
  10. J. Microbiol. Biotechnol. v.13 Tissue engineering of smooth muscle under a mechanically dynamic condition Kim, B. S.;S. I. Jeong;S. W. Cho;J. Nikolovski;D. J. Mooney;S. H. Lee;O. J. Jeon;T. W. Kim;S. H. Lim;Y. S. Hong;C. Y. Choi;Y. M. Lee;S. H. Kim;Y. H. Kim
  11. Science v.260 Tissue engineering Langer, R.;J. P. Vacanti https://doi.org/10.1126/science.8493529
  12. J. Microbiol. Biotechnol. v.12 Determination of optimum aggregates of porcine hepatocytes as a cell source of a bioartificial liver Lee, D. H.;J. H. Lee;J. E. Choi;Y. J. Kim;S. K. Kim;J. K. Park
  13. FASEB J. v.12 A completely biological tissue-engineered human blood vessel L'Heureux, N.;S. Paquet;R. Labbe;L. Germain;F. A. Auger https://doi.org/10.1096/fasebj.12.1.47
  14. J. Biomed. Mater. Res. v.48 The development of an embdding technique for polylactide sponges Loebsack, A. B.;C. R. Halberstadt;Jr. W. D. Holder;H. E. Gruber;C. R. Culberson;K. G. Greene;W. D. Roland;K. J. L.Burg https://doi.org/10.1002/(SICI)1097-4636(1999)48:4<504::AID-JBM16>3.0.CO;2-Y
  15. Cell Tissue Kinet. v.14 Potential pitfalls of ($^3H$) thymidine techniques to measure cell proliferation Maurer, H. R.
  16. Biomaterials v.17 Stabilized polyglycolic acid fibre-based tubes for tissue engineering Mooney, D. J.;C. L. Mazzoni;C. Breuer;K. McNamara;D. Hern;J. P. Vacanti;R. Langer https://doi.org/10.1016/0142-9612(96)85573-6
  17. J. Immunol. Methods v.65 Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays Mosmann, T. https://doi.org/10.1016/0022-1759(83)90303-4
  18. Science v.284 Functional arteries grown in vitro Niklason, L. E.;J. Gao;W. M. Abbott;K. K. Hirschi;S. Houser;R. Marini;R. Langer https://doi.org/10.1126/science.284.5413.489
  19. Methods Cell Biology v.52 Rebecca, R. P.;B. Claudio;C. Linda;M. Robert;T .C. Michael
  20. J. Immunol. Methods v.142 An improved colorimetric assay for cell proliferation and viability utilizing tetrazolium salt XTT Roehm, N. W.;G. H. Rodgers;S. M. Hatfield;A. L. Glasebrook https://doi.org/10.1016/0022-1759(91)90114-U
  21. J. Surg. v.85 Long-term results of femorotibial bypass with vein or polytetrafluoroethylene Sayers, R. D.;S. Raptis;M. Berce;J. H. Miler https://doi.org/10.1046/j.1365-2168.1998.00765.x
  22. Cancer Res. v.48 Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines Scudiero, D. A.;R. H. Shoemaker;K. D. Paull;A. Monks;S. Tierney;T. H. Nofziger;M. J. Currents;D. Seniff;M. R. Boyd
  23. Biomaterials v.17 Tissue engineering and autologous transplant formation: Practical approaches with resorbable biomaterials and new cell culture techniques Sittinger, M.;J. Bujia;N. Rotter;D. Reitzel;W. W. Minuth;G. R. Burmester https://doi.org/10.1016/0142-9612(96)85561-X
  24. J. Biomater. Sci. Polym. Ed. v.7 Fabrication of biodegradable polymer scaffolds to engineer trabecular bone Thomson, R. C.;M. J. Yaszemski;J. M. Powers;A. G. Mikos https://doi.org/10.1163/156856295X00805
  25. Biomaterials v.17 Magnetically oriented tissue equivalent tubes: Application to a circumferentially orientated media-equivalent Tranquillo, R. T.;T. S. Girton;B. A. Broberek;T. G. Triebes;D. L. Mooradian https://doi.org/10.1016/0142-9612(96)85573-6
  26. N. Engl. J. Med. v.336 Use of cardiac procedures and outcomes in elderly patients with myocardial infarction in the United States and Canada Tu, J. V.;C. L. Pashos;C. D. Naylor;E. Chen https://doi.org/10.1056/NEJM199705223362106
  27. Science v.231 A blood vessel model constructed from collagen and cultured vascular cells Weinberg, C. B.;E. Bell https://doi.org/10.1126/science.2934816
  28. Synthetic Biodegradable Polymer Scaffolds The history of tissue engineering using synthetic biodegradable scaffolds and cells Wong, W. H.;D. J. Mooney https://doi.org/10.1007/978-1-4612-4154-6_4
  29. J. Cell. Biochem. v.56 Tissue engineering a blood vessel: Regulation of vascular biology by mechanical stresses Ziegler, T.;R. M. Nerem https://doi.org/10.1002/jcb.240560215