References
- Booner-Weir S. 2000. Islet growth and development in theadult. J Mol Endocrinol 24: 297-302. https://doi.org/10.1677/jme.0.0240297
-
Swenne I. 1983. Effects of aging on the regenerative capacityof the pancreatic
$\beta$ -cell of the rat. Diabetes 32: 14-19. https://doi.org/10.2337/diabetes.32.1.14 - Ramiya VK. 2000. Reversal of insulin-dependent diabetesusing islets generated in vitro from pancreatic stem cells.Nat Med 6: 278-282. https://doi.org/10.1038/73128
-
Hellerstrom C, Swenne I. 1991. Functional maturation andproliferation of fetal pancreatic
$\beta$ -cells. Diabetes 40: 89-93. https://doi.org/10.2337/diab.40.2.S89 - Rooman I, Schuit F, Biuwens L. 1997. Effects of vascularendothelial growth factor on growth and differentiation ofpancreatic ducteal epithelium. Lab Inves 76: 225-232.
- Le Roith D. 1997. Insulin-like growth factors. N Engl JMed 336: 633-640. https://doi.org/10.1056/NEJM199702273360907
-
Hugl SR, White MF, Rhodes CJ. 1998. Insulin-like growthfactor I (IGF-I)-stimulated pancreatic
$\beta$ -cell growth isglucose dependent. Synergistic activation of insulin receptorsubstrate-mediated signal transduction pathway by glucoseand IGF in INS-1 cells. J Biol Chem 273: 17771-17779. https://doi.org/10.1074/jbc.273.28.17771 - Chen W, Salojin KV, Mi QS, Grattan M, Meagher TC,Zucker P, Delovitch TL. 2004. Insulin-like growth factor(IGF)-1/IGF-binding protein-3 complex: therapeutic efficacyand mechanism of protection against type 1 diabetes.Endocrinology 145: 627-638. https://doi.org/10.1210/en.2003-1274
- 신민교. 1986. 임상본초학. 남산당, 서울. p 297-298.
- Zhang R, Zhou J, Jia Z, Zhang Y, Gu G. 2004. Hypoglycemiceffect of Rehmannia glutinosa oligosaccharide and alloxaninduceddiabetic rats and its mechanism. J Ethnopharmacol90: 39-43. https://doi.org/10.1016/j.jep.2003.09.018
- 중약대사전. 1997. 정담, 서울. p 2345.
- Cheta D. 1998. Animal models of type 1 (insulin-dependent)diabetes mellitus. J Pediatr Endocrinol Metab 11: 11-19.
- Maeda M, Yabuki A, Suzuki S, Matsumoto M, TaniguchiK, Nishinakagawa H. 2003. Renal lesions in spontaneousinsulin-dependent diabetes mellitus in the nonobese diabeticmouse: acute phase of diabetes. Vet Pathol 40: 187-195. https://doi.org/10.1354/vp.40-2-187
- Mulder H, Gebre-Medhin S, Betsholtz C, Sundler F, AhrenB. 2000. Islet amyloid polypeptide (amylin)-deficient mice develop a more severe from of alloxan-induced diabetes.Am J Physiol Endocrinol Metab 278: E684-691. https://doi.org/10.1152/ajpendo.2000.278.4.E684
- Reddy S, Yip S, Karanam M, Poole CA, Ross JM. 1999. Animmunohistochemical study of macrophage influx and theco-localization of inducible nitric oxide synthase in thepancreas of non-obese diabetic (NOD) mice during diseaseacceleration with cyclophosphamide. Histochem J 31: 303-314. https://doi.org/10.1023/A:1003765918017
-
George M, Eduard A, Alba C, Cristina C, Jean CD, BoshF. 2002.
$\beta$ -cell expression of IGF-I leads to recovery from type 1 diabetes. J Clin Invest 109: 1153-1163. https://doi.org/10.1172/JCI0212969 - Thrailkill K, Quattrin T, Baker L, Litton J, Dwigun K,Rearson M, Poppenheimer M, Kotlovker D, Giltinan D,Gesundheit N, Martha P Jr. 1997. Dual hormonal replacementtherapy with insulin and recombinant human insulin-like growth factor (IGF)-I in insulin-dependent diabetesmellitus: effects on the growth hormone/IGF/IGF-bindingprotein system. J Clin Endocrinol Metab 82: 1181-1187. https://doi.org/10.1210/jc.82.4.1181
- Quattrin T, Thrailkill K, Baker L, Litton J, Dwigun K,Rearson M, Poppenheimer M, Giltinan D, Gesundheit N,Martha P Jr. 1997. Dual hormonal replacement with insulinand recombinant human insulin-like growth factor I inIDDM. Effects on glycemic control, IGF-I levels, and safetyprofile. Diabetes Care 20: 374-380. https://doi.org/10.2337/diacare.20.3.374
- Kim JS, Na CS. 2002. Effects of pear phenolic compound on the STZ-treated mice for induction of diabetes. J Korean Soc Food Sci Nutr 31: 1107-1111. https://doi.org/10.3746/jkfn.2002.31.6.1107
- Petrik J, Arany E, McDonald J, Hill J. 1998. Apoptosis in the pancreatic islet cells of the neonatal rat is associated with a reduced expression of insulin-like growth factor II that may act as a survival factor. Endocrinology 139: 2994-3004. https://doi.org/10.1210/en.139.6.2994
Cited by
- Hypoglycemic Effect of Sargassum ringgoldianum Extract in STZ-induced Diabetic Mice vol.17, pp.1, 2012, https://doi.org/10.3746/pnf.2012.17.1.008
- Hypoglycemic Effect of Padina arborescens Extract in Streptozotocin-induced Diabetic Mice vol.17, pp.4, 2012, https://doi.org/10.3746/pnf.2012.17.4.239
- Quality Characteristics and Antioxidant Activities of Rehmannia glutinosa JungKwa Prepared with Different Kinds of Sugars vol.30, pp.1, 2014, https://doi.org/10.9724/kfcs.2014.30.1.076
- Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent α-glucosidase and α-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice vol.615, pp.1-3, 2009, https://doi.org/10.1016/j.ejphar.2009.05.017
- Hypoglycemic effect of fermented soymilk added with bokbunja (Rubus coreanus Miquel) in diabetic mice vol.19, pp.4, 2010, https://doi.org/10.1007/s10068-010-0146-3
- Antioxidative Activity of a Medicinal Herb Mixture Prepared through the Traditional Antidiabetic Prescription vol.18, pp.6, 2011, https://doi.org/10.11002/kjfp.2011.18.6.916
- The hypoglycemic effect of fermented Pueraria thunbergiana extract in streptozotocin-induced diabetic mice vol.24, pp.6, 2015, https://doi.org/10.1007/s10068-015-0293-7
- Hypoglycemic Effects of a Medicinal Herb Mixture Prepared through the Traditional Antidiabetic Prescription vol.18, pp.6, 2011, https://doi.org/10.11002/kjfp.2011.18.6.923
- Phlorofucofuroeckol A isolated from Ecklonia cava alleviates postprandial hyperglycemia in diabetic mice vol.752, 2015, https://doi.org/10.1016/j.ejphar.2015.02.003
- Daidzein inhibits carbohydrate digestive enzymes in vitro and alleviates postprandial hyperglycemia in diabetic mice vol.712, pp.1-3, 2013, https://doi.org/10.1016/j.ejphar.2013.04.047
- Alleviating Effects of Baechu Kimchi Added Ecklonia cava on Postprandial Hyperglycemia in Diabetic Mice vol.18, pp.3, 2013, https://doi.org/10.3746/pnf.2013.18.3.163
- Octaphlorethol A: a potent α-glucosidase inhibitor isolated from Ishige foliacea shows an anti-hyperglycemic effect in mice with streptozotocin-induced diabetes vol.5, pp.10, 2014, https://doi.org/10.1039/C4FO00420E
- Polyopes lancifolia Extract, a Potent α-Glucosidase Inhibitor, Alleviates Postprandial Hyperglycemia in Diabetic Mice vol.19, pp.1, 2014, https://doi.org/10.3746/pnf.2014.19.1.005
- Effects of Anti-inflammatory and Rehmanniae radix Pharmacopuncture on Atopic Dermatitis in NC/Nga Mice vol.6, pp.2, 2013, https://doi.org/10.1016/j.jams.2012.10.007
- Dieckol isolated from Ecklonia cava inhibits α-glucosidase and α-amylase in vitro and alleviates postprandial hyperglycemia in streptozotocin-induced diabetic mice vol.48, pp.10, 2010, https://doi.org/10.1016/j.fct.2010.06.032
- Bioactive compounds extracted from Gamtae (Ecklonia cava) by using enzymatic hydrolysis, a potent α-glucosidase and α-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice vol.21, pp.4, 2012, https://doi.org/10.1007/s10068-012-0150-x
- A phlorotannin constituent of Ecklonia cava alleviates postprandial hyperglycemia in diabetic mice vol.55, pp.1, 2017, https://doi.org/10.1080/13880209.2017.1291693
- 자구자(Hovenia dulcis Thunb) 추출물이 Streptozotocin으로 유발된 고혈당 생쥐에 미치는 영향 vol.34, pp.5, 2004, https://doi.org/10.3746/jkfn.2005.34.5.632
- Hypoglycemic Effect of Fermented Soymilk Extract in STZ-induced Diabetic Mice vol.14, pp.1, 2009, https://doi.org/10.3746/jfn.2009.14.1.008
- Rehmanniae Radix, an Effective Treatment for Patients with Various Inflammatory and Metabolic Diseases: Results from a Review of Korean Publications vol.20, pp.2, 2004, https://doi.org/10.3831/kpi.2017.20.010
- Sargassum yezoense Extract Inhibits Carbohydrate Digestive Enzymes In Vitro and Alleviates Postprandial Hyperglycemia in Diabetic Mice. vol.22, pp.3, 2004, https://doi.org/10.3746/pnf.2017.22.3.166
- Portulaca oleracea L. Extract Lowers Postprandial Hyperglycemia by Inhibiting Carbohydrate-digesting Enzymes vol.28, pp.4, 2004, https://doi.org/10.5352/jls.2018.28.4.421
- Sargassum sagamianum Extract Alleviates Postprandial Hyperglycemia in Diabetic Mice vol.23, pp.2, 2004, https://doi.org/10.3746/pnf.2018.23.2.122
- Inhibitory Effects of Loranthus Parasiticus Extract on Carbohydrate Digestive Enzymes and Postprandial Hyperglycemia vol.30, pp.1, 2004, https://doi.org/10.5352/jls.2020.30.1.18