References
- International Congress Series v.1229 Nutritional modification of cardiovascular disease risk Merete O https://doi.org/10.1016/S0531-5131(01)00463-0
- Am J Med v.113 Randomized clinical trials on the effects of dietary fat and carbohydrate on plasma lipoproteins and cardiovascular disease Sacks FM;Katan M https://doi.org/10.1016/S0002-9343(01)00987-1
- Am J Med v.113 Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer Kris Etherton PM;Hecker KD;Bonanome A;Coval SM;Binkoski AE;Hilpert KF;Griel AE;Etherton TD https://doi.org/10.1016/S0002-9343(01)00995-0
- Prev Med v.35 Dietary patterns and the odds of carotid atherosclerosis in women: The Framingham Nutrition Studies Millen BE;Quatromoni PA;Nam B.H.;O'Horo CE;Polak JF;D'Agostino RB https://doi.org/10.1006/pmed.2002.1116
- Nutrition Research v.20 The potential role of biotin insufficiency on essential fatty acid metabolism and cardiovascular disease risk Ho RC;Cordain L https://doi.org/10.1016/S0271-5317(00)00201-3
- Biomedicine & Pharmacotherapy v.57 Biochemical pharmacology of functional foods and prevention of chronic diseases of aging Ferrari C;Torres E https://doi.org/10.1016/S0753-3322(03)00032-5
- Nutrition v.16 Nutraceuticals and functional foods: introductior and meaning Hardy G https://doi.org/10.1016/S0899-9007(00)00332-4
- Nutrition v.20 Elucidating the role of nutraceuticals in overexpressing antiapoptotic proteins in prostate cancer Rafi MM https://doi.org/10.1016/j.nut.2003.09.014
- Experimental Gerontology v.35 Nutraceutical interventions may delay aging and the age-related diseases Villeponteau B;Cockrell R;Feng J https://doi.org/10.1016/S0531-5565(00)00182-0
- Phytochemistry v.60 Genistein Dixon RA;Ferreira D https://doi.org/10.1016/S0031-9422(02)00116-4
- Peptides v.24 New antihypertensive peptides isolated from rapeseed Marczak ED;Usui H;Fujita H;Yang Y;Yokoo M;Lipkowski AW;Yoshikawa M https://doi.org/10.1016/S0196-9781(03)00174-8
- J Food Sci v.55 Difference between bamboo shoots and vegetables in thermal disintegration fo tissues and polysaccharides fractionated by successive extraction Michiko F https://doi.org/10.1111/j.1365-2621.1990.tb05219.x
- J Agric Food Chem v.49 Identifiation and antioxidant activity of novel chlorogenic acid derivatives from bamboo (Phyllostachys edulis) Kweon M.;Hwang H.J.;Sung H.C. https://doi.org/10.1021/jf010514x
- J Agric Food Chem v.48 Evaluation of antioxidant and prooxidant activities of bamboo (Phyllostachys nigra var.) Henonis leaf extract in vitro Hu C;Zhang Y;Kitts DD https://doi.org/10.1021/jf0001637
- J Korean Soc Food Sci Nutr v.25 Physiological and antibacterial activity of bamboo (Sasa coreana Nakai) leaves Kim M.J.;Byun M.W.;Jang M.S.
- Korean J Postharvest Sci Technol v.8 Functional properties and antimicrobial activity of bamboo (Phyllostachys sp.) extracts Kim N.K.;Cho S.H.;Lee S.D.;Ryu J.S.;Shim K.H.
- Korean J Food Sci Technol v.34 Antimicrobial activities of ethanol extracts from Korean bamboo culms and leaves Baek J.W.;Jung S.H.;Moon G.S.
- J Food Sci Nutr v.1 Effect of bamboo (Pseudosasa japonica Makino) leaves on the quality and sensory characteristics of Dongchimi Kim M.J.;Kim B.K.;Jang M.S.
- Korean J Food Sci Technol v.27 Antimicrobial activity of bamboo leaves extract on microorganisms related to kimchi fermentation Chung D.K.;Yu R.N.
- Korean J Dietary Culture v.17 Effects of methanol extracts from bamboo (Pseudosasa japonica Makino) leaves extracts on lipid metabolism in rats fed high fat and high cholesterol diet Shin M.K.;Han S.H.
- Korean J Food Sci Technol v.35 Antioxidative effects of Korean bamboo trees, wang-dae, som-dae, maengjong-juk, jolitdae and o-juk Lee M.J.;Moon G.S.
- Atherosclerosis v.160 Is there a genetic basis for resistance to atherosclerosis? Stein O;Thiery J;Stein Y https://doi.org/10.1016/S0021-9150(01)00664-5
- Biomedicine & Pharmacotherapy v.56 Atherosclerosis and cancer: common pathways on the vascular endothelium Morganti M;Carpi A;Nicolini A;Gorini I;Glaviano B;Fini M;Giavaresi G;Mittermayer C;Giardino R https://doi.org/10.1016/S0753-3322(02)00242-1
- Cardiovascular Surgery v.9 Development of atherosclerosis and plaque biology Kadar A;Glasz T https://doi.org/10.1016/S0967-2109(00)00097-1
- Atherosclerosis v.141 Oxidant and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis Heinecke JW
- The Research and Extension v.31 Breeding strategy for enhancing the utility of rice Choi H.C.
- Analytical Biochemistry v.95 Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction Ohkawa H;Ohishi N;Yagi K https://doi.org/10.1016/0003-2697(79)90738-3
- J Biol Chem v.262 Age-related changes in oxidized proteins Oliver CN;Ahn BW;Moerman EJ;Goldstein S;Stadtman ER
- Methods in Enzymology v.186 Determination of carbonyl content in oxidatively modified proteins Livine RL;Garland D;Oliver CN;Amici A;Climent I;Lenz AG;Ahn BW;Shaltiel S;Stadtman ER https://doi.org/10.1016/0076-6879(90)86141-H
- Anal Biochem v.4 Revaluation of assay methods and establishment of kit for superoxide dismutase activity Oyanagui Y
- Biochem Biophys Res Commun v.71 Glutathione peroxidase activity in selenium-dificient rat liver Lawrence RA;Burk F https://doi.org/10.1016/0006-291X(76)90747-6
- Methods in Enzymology v.113 Glutathione reductase Inger C;Bengt M https://doi.org/10.1016/S0076-6879(85)13062-4
- Methods in Enzymology v.105 Catalase in vitro Aebei H https://doi.org/10.1016/S0076-6879(84)05016-3
- Anal Biochem v.27 Enzymatic method for quantitative determination of nanogram amounts of total and oxidized glutathione: appli-cation to mammalian blood and other tissues Tietze F https://doi.org/10.1016/0003-2697(69)90064-5
- Anal Biochem v.72 A rapid and sensitive method for the quantitation of microgram quantities o protein utilizing the principle of protein-dye binding Bradford MM https://doi.org/10.1016/0003-2697(76)90527-3
- Free Rad Biol Med v.32 Oxidized amino acids: culprits in human atherosclerosis and indicators of oxidative stress Heinecke JW https://doi.org/10.1016/S0891-5849(02)00792-X
- Pharmacology & Therapeutics v.89 Oxidative pathways in cardioascular disease: roles, mechanisms, and therapeutic implications Wattanapitayakul SK;Bauer JA https://doi.org/10.1016/S0163-7258(00)00114-5
- Circulation v.91 Atherosclerosis: Basic mechanisms: Oxidation, inflammation, and genetics Berliner JA;Navab M;Fogelman AM;Frank JS;Demer LL;Edwards PA;Watson AD;Lusis AJ https://doi.org/10.1161/01.CIR.91.9.2488
- Atherosclerosis v.167 Autoantibodies against modified low-density lipoproteins in coronary artery disease Tornvall P;Waeg G;Nilsson J;Hamsten A;Regnstrom J https://doi.org/10.1016/S0021-9150(03)00021-2
- Clinica Chimica Acta v.317 Comparison of antioxidant effects of naringin and probocol in cholesterol -fed rabbirs Jeon S.M.;Bok S.H.;Jang M.K.;Kim Y.H.;Nam K.T.;Jeong T.S.;Park Y.B.;Choi M.S. https://doi.org/10.1016/S0009-8981(01)00778-1
- J Korean Soc Food Sci Nutr v.31 Effects of Korean wheat on LDL oxidation and atherosclerosis in cholesterol-fed rabbits Choe M.;Kim H.S. https://doi.org/10.3746/jkfn.2002.31.1.104
- Free Rad Biol Med v.31 Effect of vitamin E on aortic lipid oxidation and intimal proliferation after arterial injury in cholesterol-fed rabbits Upston JM;Witting PK;Brown AJ;Stocker R;Keaney JF https://doi.org/10.1016/S0891-5849(01)00721-3
- Atherosclerosis v.141 Dual effects of the antioxidant agents probucol and carvedilol on proliferative and fatty lesions in hypercholesterolemic rabbits Donetti E;Soma MR;Barberi L;Paoletti R;Fumagalli R;Roma P;Catapano AL https://doi.org/10.1016/S0021-9150(98)00146-4
- J Biol Chem v.262 Protein damaged by oxygen radicals are rapidly degraded in extracts of red blood cells Davies KJ;Goldberg AL
- FEBS Letters v.437 Generation of protein carbonyls by glycoxidation and lipoxidation reactions with autoxidation products of ascorbic acid and polyunsaturated fatty acids Miyata T;Inagi R;Asahi K;Yamada Y;Horie K;Sakai H;Uchida K;Kurokawa K https://doi.org/10.1016/S0014-5793(98)01079-5
- Free Rad Biol Med v.29 Antiatherogenic effect of coenzyme Q10 in apolipoprotein E gene knockout mice Witting PK;Pettersson K;Letters J;Stocker R https://doi.org/10.1016/S0891-5849(00)00311-7
- Life Sciences v.69 Antioxidant activity of naringin and lovastatin in high cholesterol-fed rabbits Jeon S.M.;Bok S.H.;Jang M.K.;Lee M.K.;Nam K.T.;Jeong T.S.;Park Y.B.;Rhee S.J.;Choi M.S. https://doi.org/10.1016/S0024-3205(01)01363-7
- Life Sciences v.58 Effects of probucol on hypercholesterolemia-induced changes in antioxidant enzymes Mantha SV;Kalra J;Prasad K https://doi.org/10.1016/0024-3205(95)02315-1
- Life Sciences v.74 Naringin alters the cholesterol biosynthesis and antioxidant enzyme activities in LDL receptor-knockout mice under cholesterol fed condition Kim H.J.;Oh G.T.;Park Y.B.;Lee M.K.;Seo H.J.;Choi M.S. https://doi.org/10.1016/j.lfs.2003.08.026
- Prostaglandins & Other Lipid Mediators v.66 Effects of fish oil and vitamin E on the antioxidant defense system in diet-induced hypercholesterolemic rabbits Hsu H.C.;Lee Y.T.;Chen M.F. https://doi.org/10.1016/S0090-6980(01)00146-0
- Food Chemistry v.83 Antioxidant action of flavonoids from Mangifera indica and Emblica officinalis in hypercholesterolemic rats Anila L;Vijayalakshmi NR https://doi.org/10.1016/S0308-8146(03)00155-9
- Nutrition v.18 Free radicals, antioxidants, and nutrition Fang Y.Z.;Yang S.;Wu G. https://doi.org/10.1016/S0899-9007(02)00916-4
- Free Rad Biol Med v.25 Chemical biology of nitric oxide: Insight into regulatory, cytotoxic, and cytoprotective mechanism of nitric oxide Wink DA;Mitchell JB https://doi.org/10.1016/S0891-5849(98)00092-6
- Cardiovascular Research v.53 Chronic antioxidant supplementation attenuates nuclear factor-B activation and preserves endothelial function in hypercholesterolemic pigs Rodriguez Porcel M;Lerman LO;Holmes DR;Richardson D;Napoli C;Lerman A https://doi.org/10.1016/S0008-6363(01)00535-1
- Clinica Chimica Acta v.328 Changes of oxidative stress in various tissues by long-term administration of vitamin E in hypercholesterolemic rats Cahide G;Tannaz M https://doi.org/10.1016/S0009-8981(02)00388-1
- Atherosclerosis v.163 Increased macrophage glutathione content reduces cell-mediated oxidation of LDL and atherosclerosis in apolipoprotein E -deficient mice Rosenblat M;Coleman R;Aviram M https://doi.org/10.1016/S0021-9150(01)00744-4
- Arch Med Res v.33 Decreased serum total antioxidant status and erythrocyte-reduced glutathione levels are associated with increased serum malondialdehyde in atherosclerotic patients Tamer L;Sucu N;Polat G;Ercan B;Barlas A;Yucebilgic G;Unlu A;Dikmengil M;Atik U https://doi.org/10.1016/S0188-4409(01)00381-2
Cited by
- Effects of grape pomace on the antioxidant defense system in diet-induced hypercholesterolemic rabbits vol.4, pp.2, 2010, https://doi.org/10.4162/nrp.2010.4.2.114