바이폴라 트랜지스터 등가회로 모델의 베이스-컬렉터 캐패시턴스 분리를 위한 개선된 추출 방법

An Improved Extraction Method for Splitting Base-Collector Capacitance in Bipolar Transistor Equivalent Circuit Model

  • 이성현 (한국외국어대학교 전자정보공학부)
  • 발행 : 2004.07.01

초록

본 논문에서는 교류전류 집중현상이 고려된 바이폴라 등가모델에서 내부 베이스-컬렉터 캐패시턴스(C/sub μ/)와 외부 베이스-컬렉터 캐패시턴스(C/sub μx/)를 분리해서 추출하는 개선된 방법을 연구하였다. 먼저, 기존 추출방법들의 문제점들을 파악하고, 교류전류 집중 캐패시턴스가 포함된 차단모드 등가회로로부터 개선된 추출방정식들을 유도하였다. 이렇게 추출된 C/sub μx/와 C/sub μx/를 사용하여 모델 된 전류 및 전력이득 주파수 응답곡선들은 기존 추출방법으로 얻어진 곡선보다 측정 데이터와 훨씬 잘 일치되었으며, 이는 개선된 추출방법의 정확도를 증명한다.

An improved extraction method considering ac current crowding effect is investigated to determine intrinsic ( $C_{\mu}$) and extrinsic ( $C_{\mu}$) base-collector capacitances of bipolar junction transistors separately. The drawbacks of conventional methods are pointed out, and the improved extraction equations are derived from a cutoff mode equivalent circuit with the ac crowding capacitance. The frequency response curves of modeled current and power gains using the extracted values of $C_{\mu}$ and $C_{\mu}$ have much better agreements with measured ones than those of the conventional methods, verifying the accuracy of the improved technique.

키워드

참고문헌

  1. D. Berger, N. Gambetta, D. Cell, and C. Dufaza, 'Extraction of the base-collector capacitancesp-litting along the base resistance using HF measurements,' in Proc. IEEE Bipolar/BiCMOS Circuits and Technology Meet., pp. 180-183, 2000 https://doi.org/10.1109/BIPOL.2000.886199
  2. S. Lee, 'A New Technique to Extract Intrinsic and Extrinsic Base-Collector Capacitances of Bipolar Transistors Using Y-Parameter Equations,' in Proc. IEEE Int. Conf. on Microelectronic Test Structures, pp.133-136, 2003 https://doi.org/10.1109/ICMTS.2003.1197431
  3. B. Ardouin, T. Zimmer, H. Mnif, and P. Fouillat 'Direct method for bipolar base-emitter and base-collector capacitance splitting using high frequency measurements,' in Proc. IEEE Bipolar/BiCMOS Circuits and Technology Meet., pp. 114-117, 2001 https://doi.org/10.1109/BIPOL.2001.957870
  4. M.P.J.G. Versleijen, 'Distributed high frequency effects in bipolar transistors,' in Proc. IEEE Bipolar Circuits and Technology Meet., pp. 85-88, 1991 https://doi.org/10.1109/BIPOL.1991.160962
  5. H.-S. Rhee, S. Lee, and B.R. Kim, 'DC and AC current crowding effects model analysis in bipolar junction transistors using a new extraction method,' Solid-State Electronics, vol. 38, no.1, pp.31-35, 1995 https://doi.org/10.1016/0038-1101(94)E0062-J
  6. H.C. de Graaff, W.J. Kloosterman, J.A.M. Geelen, and M.C.A.M. Koolen, 'Experience with the new compact MEXTRAM model for bipolar transistors,' in Proc. IEEE Bipolar Circuits and Technology Meet., pp. 246-249, 1989 https://doi.org/10.1109/BIPOL.1989.69501
  7. A. Koldehoff, M. Schroter, and H.-M. Rein, 'A compact bipolar transistor model for very-high-frequency applications with special regard to narrow emitter stripes and high current densities,' Solid State Electron., vol. 36, pp. 1035-1048, July 1993 https://doi.org/10.1016/0038-1101(93)90122-7
  8. S. Lee, B. R. Ryum, and S. W. Kang, 'A new parameter extraction technique for small-signal equivalent circuit of polysilicon emitter bipolar transistors,' IEEE Trans. Electron Device, vol. 41, pp. 233-238, Feb. 1994 https://doi.org/10.1109/16.277373
  9. S. Lee, H. K. Yu, C. S. Kim, J. G. Koo, and K. S. Nam, 'A novel approach to extracting small-signal model parameters of silicon MOSFETs,' IEEE Microwave and Guided Wave Lett., vol. 7, pp. 75-77, March 1997 https://doi.org/10.1109/75.556037