Titanium Dioxide Nanofibers Prepared by Using Electrospinning Method

  • Ding, Bin (Department of Advanced Organic Materials Engineering, Chonbuk National University) ;
  • Kim, Chul Ki (Department of Textile Engineering, Chonbuk National University) ;
  • Kim, Hak Yong (Department of Textile Engineering, Chonbuk National University) ;
  • Seo, Min Kang (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Park, Soo Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • Published : 2004.06.01

Abstract

The synthesis of titanium dioxide nanofibers with 200-300nm diameter was presented. The new inorganic-organic hybrid nanofibers were prepared by sol-gel processing and electrospinning technique using a viscous solution of titanium isopropoxide (TiP)/poly(vinyl acetate) (PVAc). Pure titanium dioxide nanofibers were obtained by high temperature calcination of the inorganic-organic composite fibers. SEM, FT-IR, and WAXD techniques were employed to characterize these nanofibers. The titanium dioxide nanostructured fibers have rougher surface and smaller diameter compare with PVAc/TiP composite nanofibers. The anatase to rutile phase transformation occurred when the calcination temperature was increased from $600^{\circ}C$ to $1000^{\circ}C$.

Keywords

References

  1. Q. Xu, M. A. Anderson, and . J. Am, Avartsm. Adaov., 77, 1939 (1994)
  2. C. T. Kresge, M. E. Leonowicz, W. J. Roth, C. Vartuli, and J. S. Beck, Nature, 359, 710 (1992) https://doi.org/10.1038/359710a0
  3. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. Mccunen, J. B. Higgins, and J. L. Schlenker, J. Am. Chem. Soc., 114, 10834 (1992). https://doi.org/10.1021/ja00053a020
  4. P. Ban, Nature, 377, 290 (1995)
  5. K. N. P. Kumar, K. Keizer, and A. J. Burggraf, J. Mat. Sci. Lett., 13, 59 (1994)
  6. F. F. Fan, H. Y. Liu, and A. J. Bard, J. Phys. Chem., 89, 4418 (1985) https://doi.org/10.1021/j100267a003
  7. G. E. Badini, K. T. V. Grattan, A. C. C. Tseung, and A. W. Palmer, Optical Fiber Technol., 2, 378 (1996) https://doi.org/10.1006/ofte.1996.0043
  8. E. Stathatos, D. Tsiourvas, and P. Lianos, Colloids and Surfaces A, 149,49 (1999) https://doi.org/10.1016/S0927-7757(98)00292-1
  9. H. Lin, H. Kozuka, and T. Yoko, Thin Solid Films, 315, 111(1998) https://doi.org/10.1016/S0040-6090(97)00759-1
  10. P. Christopolou, D. Davazoglou, C. Trapalis, and G. Kordas, Thin Solid Films, 323, 188 (1998) https://doi.org/10.1016/S0040-6090(97)01018-3
  11. P. Mumgavel, M. Kalaiselvam, A. R. Raju, and C. N. R. Rao, J. Mater. Chem., 7, 1433 (1997) https://doi.org/10.1039/a700301c
  12. D. Guerin and S. I. Shah, J. Vac. Sci. Technol. A, 15, 712 (1997)
  13. M. Georgson, A. Roos, and C. G. Ribbing, J. Vac. Sci. Technol. A, 9, 2191 (1991) https://doi.org/10.1116/1.577249
  14. K. N. Rao and S. Mohan, J. Vac. Sci. Technol. A, 8, 3260 (1990) https://doi.org/10.1116/1.576575
  15. Y. H. Lee, K. K. Chan, and M. J. Brady, J. Vac. Sci. Technol. A, 13,596 (1995) https://doi.org/10.1116/1.579792
  16. J. Aarik, A. Aidla, and T. Vustare, Phil. Mat. Lett., 73,115 (1996) https://doi.org/10.1080/095008396180911
  17. J. Aarik, A. Aidla, V. Samrnelseg, and T. Uustare, J. Cryst. Growth, 181, 259 (1997) https://doi.org/10.1016/S0022-0248(97)00279-0
  18. Y. Gao, Y. Liang, and S. A. Chambers, Surf. Sci., 365, 638 (1996)
  19. M. Tan, G. Wang, and L. Zhang, J. Appl. Phys., 80,1186 (1996) https://doi.org/10.1063/1.363727
  20. D. H. Reneker and I. Chun, Nanotechnology, 7, 216 (1996) https://doi.org/10.1088/0957-4484/7/3/009
  21. B. Ding, H. Y. Kim, S. C. Lee, D. R. Lee, and K. J. Choi, Fiber Polym., 3, 73 (2002)
  22. C. Shao, H. Y. Kim, J. Gong, B. Ding, D. R. Lee, and S. J. Park, Mater. Lett., 57, 1579 (2003) https://doi.org/10.1016/S0167-577X(02)01036-4
  23. K. M. S. Khalil and M. I. Zaki, Powder Technology, 92, 233 (1997) https://doi.org/10.1016/S0032-5910(97)03250-6
  24. B. Lantelme, M. Dumon, C. Mai, and J. P. Pascault, J. Non-Crystalline Solids, 194, 63 (1996) https://doi.org/10.1016/0022-3093(95)00498-X
  25. S. R. Kumar, C. Suresh, A. K. Vasudevan, N. R. Suja, P. Mukundan, and K. G. K. Warrier, Mater. Lett., 38, 161 (1999) https://doi.org/10.1016/S0167-577X(98)00152-9
  26. G. L. Brown, D. F. Warner, and J. H. Byon, European Patent, 0004966 (1979)
  27. A. Fradet and E. Marechal, Eur. Polym. J., 14,761 (1978) https://doi.org/10.1016/0014-3057(78)90027-7
  28. T. H. Shah, J. I. Bhatty, G. A. Ganulen, and D. Dollimore, Polymer, 25, 1333 (1984) https://doi.org/10.1016/0032-3861(84)90386-0
  29. M. Lambla, J. Dmz, and A. Bouilloux, Polym. Eng. Sci., 27, 1221 (1987) https://doi.org/10.1002/pen.760271604
  30. P. Cassagnau, M. Bert, V. Verney, and A. Michel, Polym. Eng. Sci., 32, 998 (1992) https://doi.org/10.1002/pen.760321504
  31. J. Livage, M. Henry, and C. Sanchez, Progr. Solid State Chern., 18, 259 (1988) https://doi.org/10.1016/0079-6786(88)90005-2
  32. G. L. Wilkes, Mater. Res. Soc. Syrnp. Proc. U.S.A., 171, 15 (1990)
  33. G. Busca, G. Ramis, J. M. Gallardo Amores, B. S. Escribano, and P. Piaggio, Chern. Soc. Faraday Trans., 90, 3181 (1994) https://doi.org/10.1039/ft9949003181
  34. M. Ocana, V. Fornes, J. V. Garcia Ramos, and C. J. Serna, J. Solid State Chern., 75, 364 (1988) https://doi.org/10.1016/0022-4596(88)90176-4