제초제 Alachlor과 살충제 Endosulfan이 무당개구리 (Bombina orientalis) 배아의 생존 및 기형유발에 미치는 영향

Effects of Alachlor and Endosulfan on the Survival and Malformation of Bombina orientalis Embryos

  • 강한승 (한양대학교 자연과학대학 생명과학과) ;
  • 계명찬 (한양대학교 자연과학대학 생명과학) ;
  • 이재성 (한양대학교 대학원 환경과학) ;
  • 윤용달 (한양대학교 자연과학대학 생명과학) ;
  • 김문규 (한양대학교 자연과학대학 생명과학과)
  • 발행 : 2004.06.01

초록

The chloroacetanilide herbicide alachlor (2-chloro-2', 6'-diethyl-N-(methoxymethyl)-acetanilide) and organochlorine insecticide endosulfan (6, 7, 8, 9, 10, 10-hexachloro-l, 5, 5a, 6, 9, 9a-hexahydro-6, 9-methano-2, 3, 4-benzodioxathiepin-3-oxide)are the highly toxic agricultural chemicals. Bombina orientalis is one of the most common amphibians in the world and comprises a large proportion of their total number. B. orientalis spawns in the farming regions at Spring when the massive application of agricultural chemicals occurs. These chemicals in farmland may threaten the reproduction of this frog. Therefore, we examined the embryotoxic and survival effects of alachlor and endosulfan at various concentrations in B. orientalis embryos. The survival rates of embryos at 312h post fertilization treated with alachlor and endosulfan were decreased with concentration dependent manner. Also, developmental malformations appeared by alachlor and endosulfan in B. orientalis embryos. The malformations showed in order of frequency with bent trunk, tail dysplasia, bent tail, thick-set body and ventral blister in alachlor treated embryos. The exposure of endosulfan produced 7 types of severe external malformations with tail dysplasia, pectoral blister, bent trunk, bent tail, cephalic dysplasia, ventral blister, and thick-set body. Following exposure to alachlor and endosulfan the types of malformations were diverse, suggesting these chemicals target multiple events in embryonic and larval development in this species. These results suggested that alachlor and endosulfan were detrimental for survival and development of B. orientalis embryos.

키워드

참고문헌

  1. J. Toxicol. Environ. Health v.18 Effects of insecticides on GABA-induced chloride influx into rat brain microsacs Abalis IM;ME Elderfrawi;AT Eldefrawi https://doi.org/10.1080/15287398609530844
  2. Biochem. Pharmacol. v.32 Involvement of serotonergic receptors in endosulfan neurotoxicity Agrawal AK;M Anand;NF Zaidi;PK Seth https://doi.org/10.1016/0006-2952(83)90308-8
  3. Arch. Environ. Contam. Toxicol. v.28 Skeletal malformations induced by the insecticides ZZ-Aphox and Folidol during larval development of Rana perezi Alvarez R;MP Honrubia;MP Herraez
  4. Toxicol. Lett. v.24 Role of neurotransmitters in endosulfan-induced aggressive behaviour in normal and lesioned rats Anand M;S Mehrotra;K Gopal;RN Sur;SV Chandra https://doi.org/10.1016/0378-4274(85)90143-2
  5. Environ. Res. v.40 Endosulfan and cholinergic (muscarinic) transmission: effect on electroencephalograms and $[^3H]$ quinuclidinyl benzilate in pigeon brain Anand M;AK Agrawal;K Gopal;RN Sur;PK Seth https://doi.org/10.1016/S0013-9351(86)80117-7
  6. Ind. Health v.40 Anti-implantation effect of a carbamate fungicide mancozeb in albino mice Bindali BB;BB Kaliwal https://doi.org/10.2486/indhealth.40.191
  7. Toxicol. Sci. v.68 Methoxychlor may cause ovarian follicular atresia and proliferation of the ovarian epithelium in the mouse Borgeest C;D Symonds;LP Mayer;PB Hoyer;JA Flaws https://doi.org/10.1093/toxsci/68.2.473
  8. Arch. Environ. Contam. Toxicol. v.45 Effects of the insecticide endosulfan and presence of congeneric tadpoles on Australian treefrog (Litoria freycineti) tadpoles Broomhall S;R Shine https://doi.org/10.1007/s00244-003-0172-8
  9. Environ. Health Persp. v.106 Induction of mortality and malformation in Xenopus lavis embryos by water sources associated with field frog deformites Burkhart JG;JC Helgen;DJ Fort;K Gallager;D Bowers;TL Propst;M Gernes;J Magner;MD Shelby;G Lucier
  10. Biochem. Pharmacol. v.66 Antioxidant perturbations in the olfactory mucosa of alachlor-treated rats Burman DM;HG Shertzer;AP Senft;TP Dalton;MB Genter https://doi.org/10.1016/S0006-2952(03)00475-1
  11. The feminization of nature; our future at risk Cadbury D
  12. Mutat. Res. v.439 Studies on the genotoxicology of endosulfan in bacterial system Chaudhuri K;S Selvaraj;AK Pal https://doi.org/10.1016/S1383-5718(98)00174-0
  13. Our stolen future Colborn T;D Dumanoski;JP Myers
  14. Teratog. Carcinog. Mutagen. v.22 Embryotoxicity of the pesticide mirex in vitro El-Bayomy AA;IW Smoak;S Branch https://doi.org/10.1002/tcm.10016
  15. Toxicol. Appl. Pharmacol. v.88 Cyclodiene insecticides inhibit GABAA receptor-regulated chloride transport Gant DB;ME Eldefrawi;AT Eldefrawi https://doi.org/10.1016/0041-008X(87)90206-7
  16. Oecologia v.135 Exposure of leopard frogs to a pesticide mixture affects life history characteristics of the lungworm Rhabdias ranae Gendron AD;DJ Marcogliese;S Barbeau;MS Christin;P Brousseau;S Ruby;D Cyr;M Fournier
  17. Physiol. Genomics v.12 Genomic analysis of alachlor-induced oncogenesis in rat olfactory mucosa Genter MB;DM Burman;S Vijayakumar;CL Ebert;BJ Aronow https://doi.org/10.1016/0888-7543(92)90403-F
  18. Int. J. Exp. v.83 Progression of alachlor-induced olfactory mucosal tumours Genter MB;DM Burman;B Bolon https://doi.org/10.1046/j.1365-2613.2002.00243.x
  19. Environ. Toxicol. Chem. v.22 Toxicity of cadmium, endosulfan, and atrazine in adrenal steroidogenic cells of two amphibian species, Xenopus laevis and Rana catesbeiana Goulet BN;A Hontela https://doi.org/10.1897/02-255
  20. Handbook of pesticide toxicology, classes of pesticides v.3 Alachlor Hayes WJ;ER Laws
  21. Toxicol. Sci. v.55 Ethane sulfonate metabolite of alachlor: assessment of oncogenic potential based on metabolic and mechanistic considerations Heydens WF;AG Wilson;LJ Kraus;WE Hopkins II;KJ Hotz https://doi.org/10.1093/toxsci/55.1.36
  22. Appl. Environ. Microbiol. v.62 Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan Kullman SW;F Matsumura
  23. Environ. Health Persp. v.108 Genotoxic effects of alpha-endosulfan and beta-endosulfan on human HepG2 cells Lu Y;K Morimoto;T Takeshita;T Takeuchi;T Saito https://doi.org/10.2307/3454619
  24. Environ. Toxicol. Chem. v.21 Developmental disorders in embryos of the frog Xenopus laevis induced by chloroacetanilide herbicides and their degradation products Osano O;W Admiraal;D Otieno https://doi.org/10.1897/1551-5028(2002)021<0375:DDIEOT>2.0.CO;2
  25. Mutat. Res. v.242 Studies on the genotoxicity of endosulfan, an organochlorine insecticide, in mammalian germ cells Pandey N;F Gundevia;AS Prem;PK Ray https://doi.org/10.1016/0165-1218(90)90093-H
  26. Environ. Health Persp. v.107 Effects of endocrine-disrupting contaminants on amphibian oogenesis: methoxychlor inhibits progesterone-induced maturation of Xenopus laevis oocytes in vitro Pickford DB;ID Morris https://doi.org/10.2307/3434595
  27. Aquat. Toxicol. v.62 Inhibition of gonadotropin-induced oviposition and ovarian steroidogenesis in the African clawed frog (Xenopus laevis) by the pesticide methoxychlor Pickford DB;ID Morris https://doi.org/10.1016/S0166-445X(02)00082-6
  28. Pediatr. Radiol. v.21 Campomelic syndrome: experimental models and pathomechanism Roth M https://doi.org/10.1007/BF02011053
  29. Arch. Environ. Contam. Toxicol. v.34 Comparative toxicity of diuron on survival and growth of pacific treefrog, bullfrog, red-legged frog, and African clawed frog embryos and tadpoles Schuytema GS;AV Nebeker https://doi.org/10.1007/s002449900332
  30. Neurotoxicology v.7 Neurotoxicity of endosulfan in young and adult rats Seth PK;NF Saidi;AK Agrawal;M Anand
  31. Indian J. Exp. Biol. v.27 Gonadal toxicity of short term chronic endosulfan exposure to male rats Singh SK;RS Pandey
  32. Bull. Environ. Contam. Toxicol. v.58 Effect of endosulfan on testis of growing rats Sinha N;R Narayan;DK Saxena https://doi.org/10.1007/s001289900303
  33. Environ. Toxicol. Pharmacol. v.10 Effect of endosulfan during fetal gonadal differentiation on spermatogenesis in rats Sinha N;N Adhikari;DK Saxena https://doi.org/10.1016/S1382-6689(01)00066-7
  34. A natural history of amphibians Stebbins R;N Cohen
  35. Environ. Toxicol. Chem. v.11 Toxicity of endosulfan to native and introduced fish in Australia Sunderam RIM;DMH Cheng;GB Thompson https://doi.org/10.1897/1552-8618(1992)11[1469:TOETNA]2.0.CO;2
  36. Toxicol. Sci. v.49 Evidence for site-specific bioactivation of alachlor in the olfactory mucosa of the Long-Evans rat Wetmore BA;AD Mitchell;SA Meyer;MB Genter https://doi.org/10.1093/toxsci/49.2.202
  37. Fundam. Appl. Toxicol. v.33 Mode of action of thyroid tumor formation in the male Long-Evans rat administered high doses of alachlor Wilson AG;DC Thake;WE Heydens;DW Brewster;KJ Hotz https://doi.org/10.1006/faat.1996.0138
  38. Mutat. Res. v.105 Testing of Endosulfan and Fenitrothion for genotoxicity in Saccharomyces cerevisiae Yadav AS;RK Vashishat;SN Kakar https://doi.org/10.1016/0165-7992(82)90184-1
  39. Environ. Toxicol. v.18 The fungicide benomyl inhibits differentiation of neural tissue in the Xenopus embryo and animal cap explants Yoon CS;JH Jin;JH Park;HJ Youn;SW Cheong https://doi.org/10.1002/tox.10133