References
- Data Mining and Knowledge Discovery v.5 no.1;2 Expert-driven validation of rule-based user models in personalization applications Adomavicius,G.;Tuzhilin,A. https://doi.org/10.1023/A:1009839827683
- Journal of Parallel and Distributed Computing A Tree Projection Algroithm for Generation of Frequent Itemsets Agarwal,R.C.;Aggarwal,C.;Prasad,V.
- Data mining techniques : for marketing sales, and customer support Berry,J.A.;Linoff,G.
- Proceedings of Recommender Systems Workshop. Tech. Report WS-98-08 Learning collaborative information filters Billsus,D.;Pazzani,M.
- Computational Linguistics v.17 no.4 Systemic classification and its effciency Brew,C.
- Expert Systems with Applications v.23 A Personalized Recommender System based on Web Usage Mining and Decision Tree Induction Cho,Y.H.;Kim,J.K.;Kim,S.H. https://doi.org/10.1016/S0957-4174(02)00052-0
- Journal of the American Society for Information Science v.41 no.6 Indexing by Latent Semantic Analysis Deerwester,S.;Dumais,S.T.;Furnas,G.W.;Landauer,T.K.;Harshman,R. https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
- Advances in Knowledge Discovery and Data Mining Fayyad,U.M.;Piatetsky-Shapiro,G.;Smyth,P.;Uthurusamy,R.
- Communications of the ACM Collaborative Filtering to Weave an Information Tapestry Goldberg,D.;Nichols,D.;Oki,B.M.;Terry,D.
- Proceedings of the AAAI-99 conference Combining Collaborative Filtering WIith Personal Agents for Better Recommendations Good,N.;Schafer,B.;Konstan,J.;Borchers,A.;Sarwar,B.;Herlocker,J.;Ridel,J.
- AAAI 94 Workshop on Knowledge Discovery in Databases Dynamic Generation and Refinement of Concept Hierarchies for Knowledge Discovery in Databases Han,J.;Fu,Y.
- IEEE Tran. on Knoweledge and Data Engineeering v.5 no.1 Datadriven discovery of quantitative rules in relational databases Han,J.;Cai,Y.;Cercone,N. https://doi.org/10.1109/69.204089
- Proceedings of CHI 95 Recommending and Evaluating Choices in a Virtual Community of Use Hill,W.;Stead,L.;Rosenstein,M.;Furnas,G.
- Communications of the ACM v.43 Evaluation of item-based top-n recommendation algorithms Karypis,G.
- Electronic Commerce Research and Applications v.1 A Personalized Recommendation Procedure for Internet Shopping Support Kim,J.K.;Cho,Y.H.;Kim,W.J.;Kim,J.R.;Suh,J.H. https://doi.org/10.1016/S1567-4223(02)00022-4
- Lecture Notes in Artificial Intelligence 2891 Using Web Usage Mining and SVD to Improve E-commerce Recommendation Quality Kim,J.K.;Cho,Y.H.
- Communications of the ACM v.40 no.3 GroupLens : Applying collaborative filtering to usenet news Konstan,J.;Miller,B.;Maltz,D.;Herlocker,J.;Gordon,L.;Riedl,J. https://doi.org/10.1145/245108.245126
- Concept hierarchy in data mining : specification, generation and implementation Lu,Y.
- Artificial Intelligence v.52 no.2 The description identification problem Mellish,C. https://doi.org/10.1016/0004-3702(91)90040-Q
- Proceedings of CSCW 94 GroupLens : An Open Architecture for Collaborative Filtering of Netnews Resnick,P.;Iacovou,N.;Suchak,M.;Bergstrom,P.;Riedl,J.
- Special issue of Communications of the ACM v.40 no.3 Recommender Systems Resnick,P.;Varian,H.R.
- Proceedings of ACM E-Commerce 2000 Conference Analysis of recommendation algorithms for e-commerce Sarwar,B.;Karypis,G.;Konstan,J.;Riedl,J.
- Proceeding of the Tenth International World Wide Web Conference Item-based collaborative filtering recommendation algorithm Sarwar,B.;Karypis,G.;Konstan,J.;Ridel,J.
- Proceeding of the Tenth International World Wide Web Conference Application of Dimensionality Reduction in Recommender System A Case Study Sarwar,B.;Karypis,G.;Konstan,J.;Riedl,J.