PAHs Source Fingerprints for Municipal Incinerator, Motor Vehicle Fuels and Industrial Boilers Emission

발생원별에 따른 PAHs 배출특성

  • 박찬구 (서울시보건환경연구원) ;
  • 윤중섭 (서울시보건환경연구) ;
  • 김민영 (서울시보건환경연구) ;
  • 손종열 (고려대학교 보건대학 환경위생) ;
  • 모세영 (충북대학교 환경공학과)
  • Published : 2004.06.01

Abstract

The results of individual PAH source profiles that can be applied to receptor model are as follows. The sum of 16 PAH concentrations was 391.41 ng/S㎥ in a tunnel. Phenanthrene was the most abundant compound among 16 PAH, and then pyrene, fluoranthene, anthracene, and naphthalene can be seen in elevated contents. 11,056.61 ng/S㎥ of 16 PAH concentrations in BC oil boiler was two times higher than 6,582.57 ng/S㎥) of those in LNG boiler. Naphthalene was the most abundant compound in both facilities. Phenanthrene, anthracene, and acenaphthylene were the second dominant compound group in order from both facilities. BC oil boiler had relatively high concentration of pyrene compared to LNG boiler that had high concentration of fluorene and did not detect pyrene. The sum of 16 PAH concentrations emitted from MSW incinerators after APCD (air pollution control device) was three times higher than those from MSW incinerators before APCD. However, the concentrations of more than 4-ring PAH compounds (e.g., benzo (a)anthracene) before APCD were higher than those after APCD. This fact implies that PAHs generated by combustion process are eliminated in APCD and they are continuously produced in stack or atmosphere by PAHs precursors.

Keywords

References

  1. 한국대기환경학회지 v.16 no.6 대기중 다환방향족탄화수소류의 분석방법간 비교연구 박찬구;김민영;정동균;모세영
  2. 한국대기환경학회지 v.17 no.2 황사가 서울시 대기중 $PAH_S$ 농도에 미치는 영향 박찬구;어수미;기원주;김기현;모세영
  3. 서울의 환경
  4. California. Environ. Sci. Technol. v.23 Diurnal concentrations of volatile polycyclic aromatic hydrocarbons and nitroarenes during a photochemical air pollution episode in Glendora Arey,J.;R.Atkinson;B.Zielinska;P.A.McElroy https://doi.org/10.1021/es00180a009
  5. Atmos. Environ. v.21 Policyclic aromatic hydrocarbon and nitroarenc concentrations in ambient air during a winter time high-NOх episode in the Los Angeles Basin Arey,J.;B.Zielinska;.R.Atkinson;A.M.Winter
  6. Nat. Cancer Inst. Monogr. v.9 Badger,G.M.
  7. Ph. D. Thesis, Imperial College of Science and Technology. University of London Singificane and behaviour of polycyclic aromatic hydrocarbons in urban ambient air Baek,S.O.
  8. Waste Manage. Res. v.8 no.3 Emissions of organic microp-ollutants from discontinuously operated municipal waste incinerators Benestadt,C.;I.Hagen;A.Jebens;M.Oehme;T.Ramdahl https://doi.org/10.1016/0734-242X(90)90063-S
  9. Miljkonsulterna I Studsvik AB. Stiftelsen reforsk. Fo U nr 68 Dioxiner och brander vid avfallsupalg. Malm Bergstrm,J.;B.Bjrner
  10. Environ. Sci. Technol. v.23 Wisc Mobile Sources of Atmospheric polycyclic Aromatic Hydrocarbons: A Roadway Tunnel Study Bruce,A.;Benner, Jr. Glen;Gordon,E.;Stephen,A. https://doi.org/10.1021/es00068a014
  11. Atmos. Environ. v.20 Colmsjo,A.L.;Y.U.Zebuhr;C.E.Ostman https://doi.org/10.1016/0004-6981(86)90319-7
  12. Environ. Int. v.11 A new approach to the identification of sources of air borne mutagens and carcinogens: Receptor sources apportionment modeling Daisey,J.M. https://doi.org/10.1016/0160-4120(85)90020-0
  13. J. Air Pollution Control Association v.36 Profiles of organic particulate emissions from receptor source apportionment modeling Daisey,J.M.;J.L.Chen;P.J.Lioy https://doi.org/10.1080/00022470.1986.10466041
  14. Environ. Sci. technol. v.20 Griest,W.H.;B.A.Tomkins https://doi.org/10.1021/es00145a010
  15. Ishi. Environ. Sci. Technol. v.13 Handa,T.;T.Yamamura;Y.Kato;S.Saito
  16. Anal. Chem. v.55 no.9 Simplex optimization of multielement ultrasonic extraction of atmospheric particulates Harper,S.L.;J.F.Walling;D.M.Holland;L.J.Pranger https://doi.org/10.1021/ac00260a024
  17. Polycyclic aromatic hydrocarbons Chemistry and carcinogenicity Harvy,R.G.
  18. Data handing in science and technology v.7 Receptor modeling for air quality management Hopke,P.K.(Edit)
  19. Journal of Hazardous Materials v.60 $PAH_S$ emission from various inductrial stacks Hsi-Hsien Yang;Wen-Jhy Lee;Shui-Jen hen;Soon-Onn Lai https://doi.org/10.1016/S0304-3894(98)00089-2
  20. Polynuclear Aromatic Compounds IARC
  21. Environ. Sci. Technol. v.27 Ingrld,F.;V.B.Bert;M.Stellan;S.Blrgitta;B.Nlklas;R.Christoffer https://doi.org/10.1021/es00045a016
  22. Atmospheric Environment v.26A Anthropogenic emissions of SO₂and NOх in Asia:emissions inventories Kato,N.;H.Akimoto
  23. JAPCA v.39 Kenji,Y.;K.Mikihiro https://doi.org/10.1080/08940630.1989.10466649
  24. Ph. D. thesis, Pritzker Department of Environmental Engineering, Illinois Institute of Technology Atmospheric polycyclic aromatic hydrocarbons in Chicago: characteristics and receptor modeling Khalili,N.R.
  25. Atmospheric Environ. v.29 no.14 Direct Determination of the phase distributions of semivolatile polycyclic aromatic hydrocarbons using annular denuders Lara A. Gundel;Victor C. Lee;Kariyawasam R. R. Mahanama;Robert K. Stevens;Joan M. Daisey https://doi.org/10.1016/1352-2310(94)00366-S
  26. Sci. Total Environ. v.159 Lee,W.J.;Y.F.Wnag;T.C.Lin;Y.Y.Chen;W.C.Lin;C.C.Ku;J.T.Cheng https://doi.org/10.1016/0048-9697(95)04323-S
  27. Atmospheric Environ. v.29 no.21 Aircraft-measured. ozone deposi-tion in the San Joauqin Valley of Califormia Macpherson,J.I.;R.L.Desjardins;O.H.Schuepp;R.Pearson https://doi.org/10.1016/1352-2310(95)00114-E
  28. Methods and Metabolism Eighth International Symposium Polycyclic aromatic hydrocarbons Mechanism Marcus Cooke;Anthony J. Dennis
  29. In proceeding of the 83th Annual Meeting & Exhibition of the Air & Waste Management Development of a two-phase chemical mass balance receptor model McKee,G.A.;R.A.Wadden;P.A.Scheff
  30. Atmos. Environ. v.28 Nasrin,R.K.;A.S.Peter;M.H.Thomas
  31. Atmos. Environ. v.29 no.4 PAH source fingerprints for coke ovents, diesel and gasoline engines, highway tunnels, and wood combustion emmissions Nasrin,R.K.;A.Peter;M.H.Thomas https://doi.org/10.1016/1352-2310(94)00275-P
  32. Chemosphere v.16 no.1 Formation and presence of polyhalogenated and polyclie compounds in the emissions of small and large scale municipal waste incinerators Oehme,M;S.Man;A.Mikalsen https://doi.org/10.1016/0045-6535(87)90118-4
  33. Environ. Sci. Technol. v.29 Paul,J.T.;M.R.Micheal;D.P.Rodin;B.Jim https://doi.org/10.1021/es00011a025
  34. Environ. Sci. Technol. v.14 Pedersen,P.S.;J.Ingwersen;.T.Nielsen;E.Larsen https://doi.org/10.1021/es60161a011
  35. Atmos. Environ. v.21 Nitration of gaseous poly aromatic hydrocarbons in simulated and ambient urban atmosphere:a source of mutagenic nitroarenes Pitts,J.N.Jr https://doi.org/10.1016/0004-6981(87)90186-7
  36. Mobile Source Emission including POM Species Ramdahl(et al.)
  37. Chemosphere v.4 Renestad,C.;A.Febens;G.Tveten
  38. Environ. Sci. Technol. v.31 Rodert,L.M.;D.R.Jeffrey;S.G.Michael https://doi.org/10.1021/es9606438
  39. Environ. Sci. Technol. v.28 Roger,W.;L.Hang https://doi.org/10.1021/es00054a032
  40. Air Waste Manage. Assoc v.40 Ronald,E.R.J. https://doi.org/10.1080/10473289.1990.10466791
  41. Chemosphere v.31 no.8 Formation of Polyaromatic Hydrocarbones and Polychlorinated Organic Compoundss in Municipal Waste Landfill Fires Rooksarvi,P.;J.Ruuskanen;M.Ettla;P.Rahkonen;J.Tarhannen https://doi.org/10.1016/0045-6535(95)00264-9
  42. Atmos. Environ. v.30 no.14 Concentrations, trends, and vehicle source profile of polynuclear aromatic hydrocarbons in the U.K. atmosphere Smith,D.J.T.;R.M.Harrison https://doi.org/10.1016/1352-2310(95)00474-2
  43. Sci. Total Environ. v.6 Suess,M.J. https://doi.org/10.1016/0048-9697(76)90033-4
  44. In: Analytical Methods for Coal and Coal Products v.11 Analysis of Coke Oven Effluents for polynuclear Aromatic Compounds Tucker,S.P.
  45. Research Triangle Park. North Carolina, Radian No. 298 Locating and estimating air emission from sources of polycyclic organic matter. External review draft report U.S.EPA
  46. US EPA-454/R-98-014 Locating and estimation air emissions from sources of polycyclic organic matter U.S.EPA
  47. PAH-Evaluation of Sources and Effects U.S. National Academy of Sciences
  48. Atomos. Environ. v.26B Westerholm,R.;J.Almen;H.Li;U.Rannug;A.Rosen
  49. Methods for determination of toxic organic compounds in air-EPS Methods Winberry,W.T.Jr.;N.T.Murphy;R.M.Riggan
  50. Environ. Sci. Tech. v.16 no.2 Effects of ambient temperature on aspects of airbone polycyclic aromatic hydrocarbons Yamasaki,H.;K.Kuwata;H.Miyamoto https://doi.org/10.1021/es00098a003
  51. Marcel Dekker Physical and chemical properties of polycyclic aromatic hydrocarbons Zander,M.