Charge Transport Phenomena of Polyaniline-DBSA/Polystyrene Blends

폴리 아닐 린-DBSA/폴리스타이렌 블렌드의 전하 이동 현상

  • Published : 2004.06.01

Abstract

Charge transport phenomena of polyaniline-DBSA/High Impact Polystyrene (PAM-DBSA/HIPS) blends have been studied through an examination of electrical conduction. HIPS used host polymer in the blends and PANI-DBSA obey a space charge limited conduction mechanism and a ohmic conduction mechanism respectively. However, PANI-DBSA/HIPS blends do not obey any classical conduction mechanism. Analysis of conduction mechanism revealed that the charging current of PANI-DBSA/HIPS blends increased with the increase of PANI-DBSA content. This result migrlt be explained by the reduction in the distance between PANI-DBSA particles enabling the charge carriers to migrate from a chain to a neighboring chain via hopping or micro tunneling. It was also found that the charging current of PANI-DBSA/HIPS blends decreased as the temperature was elevated, which is of typical phenomena in metals. It is speculated that the charge transport in PANI-DBSA particle was somewhat constrained due to strong phonon scattering.

Keywords

References

  1. Kahol PK, 'Magnetic Susceptibility and Electron Spin Resonance Investigations of Polyaniline and Polyaniline Poly(methylmethacrylate) blend' Soilid State Commun., Vol. 117, pp. 37-39, 2001 https://doi.org/10.1016/S0038-1098(00)00408-7
  2. J. E. Frommer and R. R. Chance, Encyclopedia of Polymer Science and Engineering, Vol. 5, Wiley N.Y., 1988
  3. T. A. Skotheim, R. L. Elsenbaumer, and J. R.Reynolds, Handbook of Conducting Polymers, Vol. 1and 2, Marcel Dekker, 1998
  4. L. H. Dao, M. Leclerc, J. Guay, J. W. Chevalier, 'Synthesis and Characterization of Substitute PolyI(anilines)', Synth Met., Vol. 29, pp. 377-382, 1989 https://doi.org/10.1016/0379-6779(89)90321-4
  5. Woo Jin Bae, Won Ho Jo, Yun Heum Park, 'Preparation of Polystyrene/Polyaniline blends by in Situ Polymerization Technique and Their Morphology and Electrical Property', Synth Met., Vol. 132, pp. 239-244, 2003 https://doi.org/10.1016/S0379-6779(02)00451-4
  6. P. Dutta, S. Biswas, M. Ghosh, S. K. De, S. Chatterjee, 'The DC and AC Conductivity of Polyaniline-Polyvinyl alcohol Blends', Synth Met., Vol. 122, pp. 455-461, 2001 https://doi.org/10.1016/S0379-6779(00)00588-9
  7. D. Djurado, M. Bee, M. Gonzalez, C. Mondelli, B. Dufour, P. Rannou, A. Pron, J. P. Travers, 'Molecular Dynamics in Plastic Conducting Compounds of Polyaniline', Chem. Phys., vol. 292, pp. 355-361, 2003 https://doi.org/10.1016/S0301-0104(03)00121-6
  8. M. Chipara, D. Hui, P. V. Notingher, M. D. Chipara, K. T. Lau, J. Sankar, D. Panaitescu, 'On Polyethylene-Polyaniline composites', Composites B: engineering, pp. 673-645, 2003 https://doi.org/10.1016/S1359-8368(03)00045-3
  9. C. O. Yoon, M. Reghu, D. Moses, A. J. Heeger, Y. Cao, 'Electrical Transport in Conductive Blends of Polyaniline in Poly(methyl methacrylate)', Synth Met., Vol. 63, pp. 47-52, 1994 https://doi.org/10.1016/0379-6779(94)90247-X
  10. R. Pelster, G. Nimtz, 'Fully Protonated Polyaniline: Hopping Transport on a Mesoscopic Scale', Phys. Rev. B, Vol. 49, pp. 718-723, 1994 https://doi.org/10.1103/PhysRevA.49.718
  11. M. Zilberman, G. I. Titelman, A. Siegmann, Y. Haba, M. Norkis, and D. Alperstein, 'Conductive Blends with Thermoplastic Polymers', J. Appl. Polym. Sci., Vol. 66, pp. 243-253, 1997 https://doi.org/10.1002/(SICI)1097-4628(19971010)66:2<243::AID-APP5>3.0.CO;2-W
  12. K. S. Suh, C. R. Lee, M. K. Lee, 'Electrode Contacts and Electrical Conduction in Low Density Polyethylene', Polymer (Korea), Vol. 15, pp. 735-741, 1991
  13. Kwang. S. Suh, Jong Eun Kim, Woo Jung Oh, Ho Gyu Yoon, T. Takada, 'Charge Distribution and Conduction Characteristics of 2-vinylpyridine-grafted Polyethylenes' J. Appl. Phys. Vol. 87, pp. 7333-7377, 2000 https://doi.org/10.1063/1.372989
  14. S. Kivelson, A. J. Heeger, 'Intrinsic Conductivity of Conducting Polymers', Synth Met., Vol. 22, https://doi.org/10.1016/0379-6779(88)90108-7
  15. A. N. Aleshin, Kwanghee Lee, J. Y. Lee, D. Y. Kim, C. Y. Kim, 'Comparison of electronic transport properties of soluble polypyroole and soluble polyaniline doped with dodecylbenzenesulfonic acid', Synth Met., Vol. 99, pp. 27-33, 1998 https://doi.org/10.1016/S0379-6779(98)00182-9
  16. J. Joo, J. K. Lee, J. S. Baeck, K. H. Kim, E. J. Oh, J. Epstein, 'Electrical, Magnetic, and Structural Properties of Chemically and Electrochemically Synthesized Polypyrroles', Synth Met., Vol. 117, pp. 45-51, 2001 https://doi.org/10.1016/S0379-6779(00)00537-3
  17. V. N. Prigodin, A. J. Epstein, 'Nature of Insulator-metal transition and novel mechanism of charge transport in the metallic state of highly doped electronic polymers', Synth Met., Vol. 125, pp. 43-53, 2002 https://doi.org/10.1016/S0379-6779(01)00510-0
  18. V. N. Prigodin, A. J. Epstein, 'Quantum Hopping in Metallic Polymers', Physica B, Vol. 338, pp. 310-317, 2003 https://doi.org/10.1016/j.physb.2003.08.011
  19. Vandna Luthra, Ramadhar Singh, S. K. Gupta, A. Mansingh, 'Mechanism of DC Conduction in Polyaniline doped with sukfuric acid', Current Appl Phys., Vol. 3, pp. 219-222, 2003 https://doi.org/10.1016/S1567-1739(02)00205-5