Ginsenosides Inhibit NMDA Receptor-Mediated Epileptic Discharges in Cultured Hippocampal Neurons

  • Kim, Sun-Oh (Biomedical Research Center, Korea Institute of Science and Technology(KIST)) ;
  • Rhim, Hye-Whon (Biomedical Research Center, Korea Institute of Science and Technology(KIST))
  • Published : 2004.05.01

Abstract

Epilepsy or the occurrence of spontaneous recurrent epileptiform discharges (SREDs, seizures) is one of the most common neurological disorders. Shift in the balance of brain between excitatory and inhibitory functions due to different types of structural or functional alterations may cause epileptiform discharges. N-Methyl-D-aspartate (NMDA) receptor dysfunctions have been implicated in modulating seizure activities. Seizures and epilepsy are clearly dependent on elevated intracellular calcium concentration ([C $a^{2+}$]$_{i}$ ) by NMDA receptor activation and can be prevented by NMDA antagonists. This perturbed [C $a^{2+}$]$_{i}$ levels is forerunner of neuronal death. However, therapeutic tools of elevated [C $a^{2+}$]$_{i}$ level during status epilepticus (SE) and SREDs have not been discovered yet. Our previous study showed fast inhibition of ginseng total saponins and ginsenoside R $g_3$ on NMDA receptor-mediated [C $a^{2+}$]$_{i}$ in cultured hippocampal neurons. We, therefore, examined the direct modulation of ginseng on hippocampal neuronal culture model of epilepsy using fura-2-based digital $Ca^{2+}$ imaging and neuronal viability assays. We found that ginseng total saponins and ginsenoside R $g_3$ inhibited $Mg^{2+}$ free-induced increase of [C $a^{2+}$]$_{i}$ and spontaneous [C $a^{2+}$]$_{i}$ oscillations in cultured rat hippocampal neurons. These results suggest that ginseng may playa neuroprotective role in perturbed homeostasis of [C $a^{2+}$]$_{i}$ and neuronal cell death via the inhibition of NMDA receptor-induced SE or SREDs.d SE or SREDs..

Keywords

References

  1. Behr, J., Heinemann, U., and Mody, I., Kindling induces transient NMDA receptor-mediated facilitation of high-frequency input in the rat dentate gyrus. J. Neurophysiol., 85, 2195-2202 (2001)
  2. Bliss, T. V. and Collingridge, G. L., A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 361, 31-39 (1993) https://doi.org/10.1038/361031a0
  3. Burgess, D. L. and Noebels, J. L., Single gene defects in mice: the role of voltage-dependent calcium channels in absence models. Epilepsy Res., 36, 111-122 (1999) https://doi.org/10.1016/S0920-1211(99)00045-5
  4. Chapman, A. G., Glutamate and epilepsy. J. Nutr., 130, 1043S-1045S (2000)
  5. Choi, D. W., Glutamate neurotoxicity and diseases of the nervous system. Neuron, 1, 623-634 (1988) https://doi.org/10.1016/0896-6273(88)90162-6
  6. Churn, S. B., Anderson, W. W., and DeLorenzo, R. J., Exposure of hippocampal slices to magnesium-free medium produces epileptiform activity and simultaneously decreases calcium and calmodulin-dependent protein kinase II activity. Epilepsy Res., 9, 211-217 (1991) https://doi.org/10.1016/0920-1211(91)90054-J
  7. Clifford, D. B., Olney, J. W., Benz, A. M., Fuller, T. A., and Zorumski, C. F., Ketamine, phencyclidine, and MK-801 protect against kainic acid-induced seizure-related brain damage. Epilepsia, 31, 382-390 (1990) https://doi.org/10.1111/j.1528-1157.1990.tb05492.x
  8. Clifford, D. B., Olney, J. W., Maniotis, A., Collins, R. C., and Zorumski, C. F., The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizures. Neuroscience, 23, 953-968 (1987) https://doi.org/10.1016/0306-4522(87)90171-0
  9. Delorenzo, R. J., Pal, S., and Sombati, S., Prolonged activation of the N-methyl-D-aspartate receptor-$Ca^{2+}$ transduction pathway causes spontaneous recurrent epileptiform discharges in hippocampal neurons in culture. Proc. Natl. Acad. Sci. U.S.A., 95, 14482-14487 (1998) https://doi.org/10.1073/pnas.95.24.14482
  10. Gulyas-Kovacs, A., Doczi, J., Tamawa, I., Detari, L, Banczerowski-Pelyhe, I., and Vilagi, I., Comparison of spontaneous and evoked epileptiform activity in three in vitro epilepsy models. Brain Res., 945, 174-180 (2002) https://doi.org/10.1016/S0006-8993(02)02751-8
  11. Horn, R. and Marty, A., Muscarinic activation of ionic currents measured by a new whole-cell recording method. J. Gen. Physiol., 92, 145-159 (1988) https://doi.org/10.1085/jgp.92.2.145
  12. Honchar, M. P., Olney, J. W., and Sherman, W. R., Systemic cholinergic agents induce seizures and brain damage in lithium-treated rats. Science, 220, 323-325(1983) https://doi.org/10.1126/science.6301005
  13. Jahr, C. E. and Stevens, C. F., Calcium permeability of the N-methyl-D-aspartate receptor channel in hippocampal neurons in culture. Proc. Natl. Acad. Sci. U.S.A., 90, 11573-11577 (1993) https://doi.org/10.1073/pnas.90.24.11573
  14. Kim, D., Song, I., Keum, S., lee, T., Jeong, M. J., Kim, S. S., McEnery, M. W., and Shin, H. S., Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) T-type Ca(2+) channels. Neuron, 31, 35-45 (2001) https://doi.org/10.1016/S0896-6273(01)00343-9
  15. Kim, S., Ahn, K., Oh, T. H., Nah, S. Y., and Rhim, H., Inhibitory effect of ginsenosides on NMDA receptor-mediated signals in rat hippocampal neurons. Biochem. Biophys. Res. Commun., 296, 247-254 (2002) https://doi.org/10.1016/S0006-291X(02)00870-7
  16. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 65, 55-63 (1983) https://doi.org/10.1016/0022-1759(83)90303-4
  17. Noebels, J. L., The biology of epilepsy genes. Annu. Rev. Neurosci., 26, 599-625 (2003) https://doi.org/10.1146/annurev.neuro.26.010302.081210
  18. Pal, S., Sombati, S., Limbrick, D. D., Jr., and DeLorenzo, R. J., In vitro status epilepticus causes sustained elevation of intracellular calcium levels in hippocampal neurons. Brain Res., 851, 20-31 (1999) https://doi.org/10.1016/S0006-8993(99)02035-1
  19. Raol, Y. H., Lynch, D. R., and Brooks-Kayal, A. R., Role of excitatory amino acids in developmental epilepsies. Ment. Retard. Deν. Disabil. Res. Rev., 7, 254-260 (2001) https://doi.org/10.1002/mrdd.1035
  20. Rice, A. C. and DeLorenzo, R. J., NMDA receptor activation during status epilepticus is required for the development of epilepsy. Brain Res., 782, 240-247 (1998) https://doi.org/10.1016/S0006-8993(97)01285-7
  21. Scheffer, I. E. and Berkovic, S. F., The genetics of human epilepsy. Trends Pharmacol. Sci., 24, 428-433 (2003) https://doi.org/10.1016/S0165-6147(03)00194-9
  22. Schwob, J. E., Fuller, T., Price, J. L., and Olney, J. W., Wide-spread patterns of neuronal damage following systemic or intracerebral injections of kainic acid: a histological study. Neuroscience, 5, 991-1014 (1980) https://doi.org/10.1016/0306-4522(80)90181-5
  23. Sombati, S. and Delorenzo, R. J., Recurrent spontaneous seizure activity in hippocampal neuronal networks in culture. J. Neurophysiol., 73, 1706-1711 (1995)
  24. Stasheff, S. F., Anderson, W. W., Clark, S., and Wilson, W. A., NMDA antagonists differentiate epileptogenesis from seizure expression in an in vitro model. Science, 245, 648-651 (1989) https://doi.org/10.1126/science.2569762
  25. Sun, D. A., Sombati, S., and DeLorenzo, R. J., Glutamate injury-induced epileptogenesis in hippocampal neurons: an in vitro model of stroke-induced 'epilepsy'. Stroke, 32, 2344-2350 (2001) https://doi.org/10.1161/hs1001.097242
  26. Westbrook, G. L., Glutamate receptor update. Curr. Opin. Neurobiol., 4, 337-346 (1994) https://doi.org/10.1016/0959-4388(94)90094-9
  27. Wong, C. G., Bottiglieri, T., and Snead, O. C., 3rd, GABA, gamma-hydroxybutyric acid, and neurological disease. Ann. Neurol., 54 Suppl 6, S3-12 (2003)