Characterization of Fetal Gonad-Derived Cells by Stem Cell Markers

줄기세포 Marker를 이용한 돼지 태아 생식선 유래 세포의 특성화

  • Choi, S. C. (School of Life Sciences and Biotechnology, Korea University) ;
  • H. H. Yeon (School of Life Sciences and Biotechnology, Korea University) ;
  • S. K. Choi (School of Life Sciences and Biotechnology, Korea University) ;
  • H. Lee (School of Life Sciences and Biotechnology, Korea University) ;
  • S. Hong (School of Life Sciences and Biotechnology, Korea University) ;
  • C. S. Park (Division of Animal Science & Resources, Research Center for Transgenic Cloned Pigs, Chungnam National University) ;
  • S. H. Lee (Kongju University) ;
  • S. H. Lee (School of Life Sciences and Biotechnology, Korea University)
  • Published : 2004.03.01

Abstract

In mammals, male and female germline stem cells are derived from primodial germ cells. Despite many efforts to identify stem cells from gonads, there has been little successe to identify germline stem cells yet. In this study, we isolate and characterized porcine germline stem cells using only stem cell markers that are prevalently expressed in various tissues. Gonadal cells derived from both male and female formed colonies and showed AP activities and different lectin binding properties. Pluripotency of germline stem cells was also identified by positive signals against putative stem cells markers such as SSEA-1 and SSEA-3. In addition, nestin was also found in primary gonad cells that have a similar morphology to the AP-positive cells. The nestin expression suggests that the germline stem cells may have similar expression of the prevalent stem cell markers found in other tissues. The demonstration of nestin expression together with pluripotent cell markers calls further investigation of the possible differentiation of nestin-positive cells into neurons.

Keywords

References

  1. Bendel-Stenzel, M., Anderson, R., Heasman, J. and Wylie, C. 1998. The origin and migration of primordial germ cells in the mouse. Sem. Cell Dev. BioI. 9:393-400 https://doi.org/10.1006/scdb.1998.0204
  2. Bez, A., Corsini, E., Curti, D., Biggiogera, M., Colombo, A., Nicosia, R. F., Pagano, S. F. and Parati, E. A. 2003. Neurosphere and neurosphere-forming cells: morphological and ultrastructural characterization. Brain Res. 993:18-29
  3. Capela, A. and Temple, S. 2002. LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as none-pendymal. Neuron 35:865-875
  4. Doitsidou, M., Reichman-Fried, M., Stebler, J., Koprunner, M., Dorries, J., Meyer, D., Esguerra, C. V., Leung, T. and Raz, E. 2002. Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 111:647-659
  5. Gallagher, E. J., Lodge, P., Ansell, R. and McWhir, J. 2003. Isolation of murine embryonic stem and embryonic germ cells by selective ablation. Transgenic Res. 12:451-460 https://doi.org/10.1023/A:1024225225302
  6. Kuwana, T. and Rogulska, T. 1999. Migratory mechanisms of chick primordial germ cells toward gonadal anlage. Cell Mol. BioI. 45:725-736
  7. Lee, C. K., Weaks, R. L., Johnson, G. A., Bazer, F. W. and Piedrahita, J. A. 2000. Effects of protease inhibitors and antioxidants on In vitro survival of porcine primordial germ cells. BioI. Reprod. 63:887-897 https://doi.org/10.1095/biolreprod63.3.887
  8. Lendahl, U., Zimmerman, L. B. and McKay, R. D. 1990. CNS stem cells express a new class of intermediate filament protein. Cell 60:585-595 https://doi.org/10.1016/0092-8674(90)90662-X
  9. Matsui, Y., Toksoz, D., Nishikawa, S., Nishikawa, S., Williams, D., Zsebo, K. and Hogan, B. L. 1991. Effect of steel factor and leukaemia inhibitory factor on murine primordial germ cells in culture. Nature 353:750-752 https://doi.org/10.1038/353750a0
  10. Pevny, L. and Rao, M. S. 2003. The stem-cell menagerie. Trends Neurosci. 26:351-359 https://doi.org/10.1016/S0166-2236(03)00169-3
  11. Resnick, J. L., Bixler, L. S., Cheng, L. and Donovan, P. J. 1992. Long-term proliferation of mouse primordial germ cells in culture, Nature 359:550-551
  12. Robinson, H. P. 1973. Sonar measurement of fetal crownrump length as means of assessing maturity in first trimester of pregnancy. Br. Med. J. 4:28-31 https://doi.org/10.1136/bmj.4.5883.28
  13. Shamblott, M. J., Axelman, J., Wang, S., Bugg, E. M., Littlefield, J. W., Donovan, P. J., Blumenthal, P. D., Huggins, G. R. and Gearhart, J. D. 1998. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl. Acad. Sci. USA 95:13726-13731 https://doi.org/10.1073/pnas.95.23.13726
  14. Shim, H. and Anderson, G., B. 1998. In vitro survival and proliferation of porcine primordial germ cells. Theriogenology 49:521-528
  15. Shim, H., Gutierrez-Adan, A., Chen, L. R., BonDurant, R. H., Behboodi, E. and Anderson, G. B. 1997. Isolation of pluripotent stem cells from cultured porcine primordial germ cells. BioI. Reprod. 57:1089-1095 https://doi.org/10.1095/biolreprod57.5.1089
  16. Wheeler, M. B. 1994. Development and validation of swine embryonic stem cells: a review. Reprod. Fertil. Dev. 6:563-568 https://doi.org/10.1071/RD9940563
  17. Young, H. E. and Black, A. C. Jr. 2004. Adult stem cells. Anat. Rec. 276:75-102(Received 12 February 2004 / Accepted 15 March 2004)